Skip to main content
Log in

High Gravity and Very High Gravity Fermentation of Sugarcane Molasses by Flocculating Saccharomyces cerevisiae: Experimental Investigation and Kinetic Modeling

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Substantial progress has been made in ethanol fermentation technology under high gravity (HG) and very high gravity (VHG), which offer environmental and economic benefits. HG and VHG processes increase the productivity of ethanol, reduce distillation costs, and enable higher yields. The aim of the present study was to evaluate the use of sugarcane molasses as the medium component along with flocculating yeasts for fermentation in a fed-batch process employing this promising technology. We evaluated fed-batch fermentation, HG, and VHG involving a molasses-based medium with high concentrations of reducing sugars (209, 222, and 250 g/L). Fermentation of 222 g/L of total reducing sugars achieved 89.45% efficiency, with a final ethanol concentration of 104.4 g/L, whereas the highest productivity (2.98 g/(L.h)) was achieved with the fermentation of 209 g/L of total reducing sugars. The ethanol concentration achieved with the fermentation of 222 g/L of total reducing sugars was close to the value obtained for Pmax (105.35 g/L). The kinetic model provided a good fit to the experimental data regarding the fermentation of 222 g/L. The results revealed that sugarcane molasses and flocculating yeasts can be efficiently used in HG fermentation to reduce the costs of the process and achieve high ethanol titers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shalaby, E. A. (2013). Biofuel: sources, extraction and determination. In Liquid, gaseous and solid biofuels - conversion techniques (pp. 451–478). https://doi.org/10.5772/51943.

  2. Puligundla, P., Smogrovicova, D., Mok, C., & Obulam, V. S. R. (2019). A review of recent advances in high gravity ethanol fermentation. Renewable Energy, 133, 1366–1379. https://doi.org/10.1016/j.renene.2018.06.062.

    Article  CAS  Google Scholar 

  3. Barbosa, H. S., Silveira, E. A., Miranda, M., & Ernandes, J. R. (2016). Efficient very-high-gravity fermentation of sugarcane molasses by industrial yeast strains. Institute of Brewing and Distilling, 122(2), 329–333. https://doi.org/10.1002/jib.317.

    Article  CAS  Google Scholar 

  4. Arshad, M., Hussain, T., Iqbal, M., & Abbas, M. (2017). Enhanced ethanol production at commercial scale from molasses using high gravity technology by mutant S. cerevisiae. Brazilian Journal of Microbiology, 48(3), 403–409. https://doi.org/10.1016/j.bjm.2017.02.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bai, F. W., Anderson, W. A., & Moo-Young, M. (2008). Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnology Advances, 26(2008), 89–105. https://doi.org/10.1016/j.biotechadv.2007.09.002.

    Article  CAS  PubMed  Google Scholar 

  6. Lopes, M. L., Paulillo, S. C. L., Godoy, A., Cherubin, R. A., Lorenzi, M. S., Giometti, F. H. C., Bernardino, C. D., Amorim Neto, H. B., & Amorim, H. V. (2016). Ethanol production in Brazil: a bridge between science and industry. Brazilian Journal of Microbiology, 47(Supp 1), 64–76. https://doi.org/10.1016/j.bjm.2016.10.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Thomas, K. C., Dhas, A., Rossnagel, B. G., & Ingledew, W. M. (1995). Production of fuel alcohol from hull-less barley by very high gravity technology. Cereal Chemistry, 72, 360–364.

    CAS  Google Scholar 

  8. Rossell, C. E. V., Nolasco Junior, J., & Yamakawa, C. K., (2014). Patent WO2014078924-A1.

  9. Cot, M., Loret, M. O., François, J., & Benbadis, L. (2007). Physiological behaviour of Saccharomyces cerevisiae in aerated fed-batch fermentation for high level production of bioethanol. FEMS Yeast Research, 7(1), 22–32. https://doi.org/10.1111/j.1567-1364.2006.00152.x.

    Article  CAS  PubMed  Google Scholar 

  10. Kawa-Rygielska, J., & Pietrzak, W. (2014). Ethanol fermentation of very high gravity (VHG) maize mashes by Saccharomyces cerevisiae with spent brewer’s yeast supplementation. Biomass and Bioenergy, 60, 50–57. https://doi.org/10.1016/j.biombioe.2013.10.028.C.G.

    Article  CAS  Google Scholar 

  11. Liu, C. G., Hao, X. M., Lin, Y. H., & Bai, F. W. (2016). Redox potential driven aeration during very-high-gravity ethanol fermentation by using flocculating yeast. Scientific Reports, 6, 25763. https://doi.org/10.1038/srep30995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Phukoetphim, N., Salakkam, A., Laopaiboon, P., & Laopaiboon, L. (2017). Improvement of ethanol production from sweet sorghum juice under batch and fed-batch fermentations: effects of sugar levels, nitrogen supplementation, and feeding regimes. Electronic Journal of Biotechnology, 26, 84–92. https://doi.org/10.1016/j.ejbt.2017.01.005.

    Article  Google Scholar 

  13. Pereira, F. B., Guimarães, P. M. R., Teixeira, A., & Domingues, L. (2010). Optimization of low-cost medium for very high gravity ethanol fermentations by Saccharomyces cerevisiae using statistical experimental designs. Bioresource Technology, 101(20), 7856–7863. https://doi.org/10.1016/j.biortech.2010.04.082.

    Article  CAS  PubMed  Google Scholar 

  14. Monteiro, B., Ferraz, P., Barroca, M., Cruz, S. H., Collins, T., & Lucas, C. (2018). Conditions promoting effective very high gravity sugarcane juice fermentation. Biotechnology for Biofuels, 11, 251. https://doi.org/10.1186/s13068-018-1239-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lebaka, V. R., Ryu, H. W., & Wee, Y. J. (2014). Effect of fruit pulp supplementation on rapid and enhanced ethanol production in very high gravity (VHG) fermentation. Bioresources and Bioprocessing, 1, 22. https://doi.org/10.1186/s40643-014-0022-8.

    Article  Google Scholar 

  16. Deesuth, O., Laopaiboon, P., Klanrit, P., & Laopaiboon, L. (2015). Improvement of ethanol production from sweet sorghum juice under high gravity and very high gravity conditions: effects of nutrient supplementation and aeration. Industrial Crops and Products, 74, 95–105. https://doi.org/10.1016/j.indcrop.2015.04.068.

    Article  CAS  Google Scholar 

  17. Li, Z., Wang, D., & Shi, Y. C. (2017). Effects of nitrogen source on ethanol production in very high gravity fermentation of corn starch. Journal of the Taiwan Institute of Chemical Engineers, 70, 229–235. https://doi.org/10.1016/j.jtice.2016.10.055.

    Article  CAS  Google Scholar 

  18. Kłosowski, G., & Mikulski, D. (2018). Complementarity of the raw material composition of Very High Gravity (VHG) mashes as a method to improve efficiency of the alcoholic fermentation process. Process Biochemistry, 74, 1–9. https://doi.org/10.1016/j.procbio.2018.08.028.

    Article  CAS  Google Scholar 

  19. Yamakawa CK. (2016) Avaliação da fermentação alcoólica com reciclo de células de hidrolisado celulósico de bagaço de cana-de-açúcar em unidade integrada e autônoma. In Brazil: Faculty of Chemical Engineering, State University of Campinas; Thesis, (p. 269).

  20. CONAB – (2019) Companhia Nacional de Abastecimento. Acompanhamento da Safra Brasileira de Cana de açúcar. - Safra 2018/19. https://www.conab.gov.br. Accessed 6 Jun 2019.

  21. Zhao, X. Q., Li, Q., He, L. Y., Li, F., Que, W. W., & Bai, F. W. (2012). Exploration of a natural reservoir of flocculating genes from various Saccharomyces cerevisiae strains and improved ethanol fermentation using stable genetically engineered flocculating yeast strains. Process Biochemistry, 47(11), 1612–1619. https://doi.org/10.1016/j.procbio.2011.06.009.

    Article  CAS  Google Scholar 

  22. Liu, C. G., Wang, N., Lin, Y. H., & Bai, F. W. (2012). Very high gravity ethanol fermentation by flocculating yeast under redox potential-controlled conditions. Biotechnology for Biofuels, 191, 45–52. https://doi.org/10.1186/1754-6834-5-61.

    Article  CAS  Google Scholar 

  23. Tofalo, R., Perpetuini, G., Gianvito, P. D., Schirone, M., Corsetti, A., & Suzzi, G. (2014). Genetic diversity of FLO1 and FLO5 genes in wine flocculent Saccharomyces cerevisiae strains. International Journal of Food Microbiology, 191, 45–52. https://doi.org/10.1016/j.ijfoodmicro.2014.08.028.

    Article  CAS  PubMed  Google Scholar 

  24. Santos, L. D., Sousa, M. D. B., Guidini, C. Z., Resende, M. M., Cardoso, V. L., & Ribeiro, E. J. (2015). Continuous ethanol fermentation in tower reactors with cell recycling using flocculent Saccharomyces cerevisiae. Process Biochemistry, 50(11), 1725–1729. https://doi.org/10.1016/j.procbio.2015.07.020.

    Article  CAS  Google Scholar 

  25. Guidini, C. Z., Santos, L. D., Silva, H. A., Resende, M. M., Cardoso, V. L., & Ribeiro, E. J. (2014). Alcoholic fermentation with flocculant Saccharomyces cerevisiae in fed-batch process. Applied Biochemistry and Biotechnology, 172(3), 1623–1638. https://doi.org/10.1007/s12010-013-0646-8.

    Article  CAS  PubMed  Google Scholar 

  26. Rivera, E. C., Yamakawa, C. K., Saad, M. B. W., Atala, D. I. P., Ambrosio, W. B., Bonomi, A., Nolasco Junior, J., & Rossell, C. E. V. (2017). Effect of temperature on sugarcane ethanol fermentation: kinetic modeling and validation under very-high-gravity fermentation conditions. Biochemical Engineering Journal, 119, 42–51. https://doi.org/10.1016/j.bej.2016.12.002.

    Article  CAS  Google Scholar 

  27. Sonego, J. L. S., Lemos, D. A., Pinto, C. E. M., Cruz, A. J. G., & Badino, A. C. (2016). Extractive fed-batch ethanol fermentation with CO2 stripping in a bubble column bioreactor: experiment and modeling. Energy and Fuels, 30, 748–757. https://doi.org/10.1021/acs.energyfuels.5b02320.

    Article  CAS  Google Scholar 

  28. Nelder, J. A., & Mead, R. A. (1965). Simplex method for function minimization. Computer Journal, 7, 308–313. https://doi.org/10.1093/comjnl/7.4.308.

    Article  Google Scholar 

  29. Gill, S. (1951). A process for the step-by-step integration of differential equations in an automatic digital computing machine. Proceedings of the Cambridge Philological Society, 47(1), 96–108. https://doi.org/10.1017/S0305004100026414.

    Article  Google Scholar 

  30. Joannis-Cassan, C., Riess, J., Jolibert, F., & Taillandier, P. (2014). Optimization of very high gravity fermentation process for ethanol production from industrial sugar beet syrup. Biomass and Bioenergy, 70, 165–173. https://doi.org/10.1016/j.biombioe.2014.07.027.

    Article  CAS  Google Scholar 

  31. Chang, Y. H., Chang, K. S., Chen, C. Y., Hsu, C. L., Chang, T. C., & Jang, H. D. (2018). Enhancement of the efficiency of bioethanol production by Saccharomyces cerevisiae via gradually batch-wise and fed-batch increasing the glucose concentration. Fermentation, 4(2), 45. https://doi.org/10.3390/fermentation4020045.

    Article  CAS  Google Scholar 

  32. Pattanakittivorakul, S., Lertwattanasakul, N., Yamada, M., & Limtong, S. (2019). Selection of thermotolerant Saccharomyces cerevisiae for high temperature ethanol production from molasses and increasing ethanol production by strain improvement. Antonie Van Leeuwenhoek, 112(7), 975–990. https://doi.org/10.1007/s10482-019-01230-6.

    Article  CAS  PubMed  Google Scholar 

  33. Andrietta, M. G. S., Andrietta, S. R., & Stupiello, E. N. A. (2011). Bioethanol – What has Brazil learned about yeasts inhabiting the ethanol production processes from sugar cane? In Biofuel production – recent developments and prospects (pp. 67–84). https://doi.org/10.5772/16572.

  34. Cao, D., Tu, M., Xie, R., Li, J., Wu, Y., & Adhikari, S. (2014). Inhibitory activity of carbonyl compounds on alcoholic fermentation by Saccharomyces cerevisiae. Journal of Agricultural and Food Chemistry, 62(4), 918–926. https://doi.org/10.1021/jf405711f.

    Article  CAS  PubMed  Google Scholar 

  35. Veloso, I. I. K., Rodrigues, K. C. S., Sonego, J. L. S., Cruz, A. J. G., & Badino, A. C. (2019). Fed-batch ethanol fermentation at low temperature as a way to obtain highly concentrated alcoholic wines: Modeling and optimization. Biochemical Engineering Journal, 41, 60–70. https://doi.org/10.1016/j.bej.2018.10.005.

    Article  CAS  Google Scholar 

  36. Atala, D. I. P., Costa, A. C., Maciel, R., & Maugeri, F. (2001). Kinetics of ethanol fermentation with high biomass concentration considering the effect of temperature. Applied Biochemistry and Biotechnology, 91-93, 353–365. https://doi.org/10.1385/ABAB:91-93:1-9:353.

    Article  CAS  PubMed  Google Scholar 

  37. Pinheiro, A. D. T., Pereira, A. S., Barros, E. M., Antonini, S. R. C., Cartaxo, S. J. M., Rocha, M. V. P., & Gonçalves, L. R. B. (2017). Mathematical modeling of the ethanol fermentation of cashew apple juice by a flocculent yeast: the effect of initial substrate concentration and temperature. Bioprocess and Biosystems Engineering, 40(8), 1221–1235. https://doi.org/10.1007/s00449-017-1782-2.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors would like to acknowledge the Brazilian fostering agencies CAPES, CNPq, and FAPEMIG (TEC-APQ-02079-16 and TEC-APQ-02489-16) for financial support to this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Líbia Diniz Santos.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camargos, C.V., Moraes, V.D., de Oliveira, L.M. et al. High Gravity and Very High Gravity Fermentation of Sugarcane Molasses by Flocculating Saccharomyces cerevisiae: Experimental Investigation and Kinetic Modeling. Appl Biochem Biotechnol 193, 807–821 (2021). https://doi.org/10.1007/s12010-020-03466-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03466-9

Keywords

Navigation