Skip to main content
Log in

Heterologous Production of Polyunsaturated Fatty Acids in E. coli Using Δ5-Desaturase Gene from Microalga Isochrysis Sp.

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Eicosapentaenoic acid (EPA) and arachidonic acid (ARA) are long-chain polyunsaturated fatty acids (PUFAs) that play a significant role in human growth and development, which deficiency can trigger several metabolic-related diseases. Since the availability of PUFA sources is limited, there arises a need to explore alternative sources. Therefore, the present study aimed to investigate whether an Escherichia coli which are engineered with Δ5Des-Iso gene isolated from Isochrysis sp. could be utilized to synthesize PUFAs. Full-length gene Δ5Des-Iso (1149 bp) was isolated from Isochrysis sp. that encodes 382 amino acids and identified as Δ5-desatruase gene using different bioinformatic analysis. Heterologous gene expression was carried out in E. coli having Δ5Des-Iso with precursor fatty acids. The Δ5Des-Iso produced novel fatty acids of EPA (ω-3) and ARA (ω-6) as respective products were identified by GC-MS. Gene expression and PUFA synthesis in E. coli were optimized by temperature, time, and concentrations of precursor fatty acid substrates. Δ5Des-Iso RNA transcript level was inversely proportional to the time and fatty acid synthesis. And, the significant production of EPA (4.1 mg/g) and ARA (8.3 mg/g) in total fatty acids was observed in E. coli grown at 37 °C for 24 h with 25 μM of external fatty acid substrate as an optimum growth conditions. E. coli could be used as alternative organism to synthesis PUFAs and widely applicable in many nutraceuticals and pharmaceuticals industry for human use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Michaelson, L. V., Napier, J. A., Lewis, M., Griths, G., Lazarus, C. M., & Stobart, A. K. (1998). Functional identification of a fatty acid v5 desaturase gene from Caenorhabditis elegans. FEBS Lett, 439(3), 215–218.

    Article  CAS  Google Scholar 

  2. Napier, J. A., Beaudoin, F., Michaelson, L. V., & Sayanova, O. (2004). The production of long chain polyunsaturated fatty acids in transgenic plants by reverse-engineering. Biochimie, 86(11), 785–793.

    Article  CAS  Google Scholar 

  3. Greene, E. R., Huang, S., Serhan, C. N., & Panigrahy, D. (2011). Regulation of inflammation in cancer by eicosanoids. Prostagland Other Lipid Mediat, 96(1-4), 27–36.

    Article  CAS  Google Scholar 

  4. Lee, J. M., Lee, H., Kang, S., & Park, W. J. (2016). Fatty acid desaturases, polyunsaturated fatty acid regulation, and biotechnological advances. Nutrients, 8(1), 23.

    Article  Google Scholar 

  5. Horrocks, L. A., & Yeo, Y. K. (1999). Health benefits of docosohexaenoic acid (DHA). Pharmacol Res, 40(3), 211–225.

    Article  CAS  Google Scholar 

  6. Brenna, J. T., & Diau, G. Y. (2007). The influence of dietary docosahexaenoic acid and arachidonic acid on central nervous system polyunsaturated fatty acid composition. Prostaglandins Leukot Essent Fat Acids, 77(5-6), 247–250.

    Article  CAS  Google Scholar 

  7. Petrie, J. R., Shrestha, P., Belide, S., Mansour, M. P., Liu, Q., Horne, J., Nichols, P. D., & Singh, S. P. (2012). Transgenic production of arachidonic acid in oilseeds. Transgenic Res, 21(1), 139–147.

    Article  CAS  Google Scholar 

  8. Maples, R. D. (2013). Arachidonic acid food sources and recommendation for the vegetarian. In G. G. Dumancas, B. S. Murdianti, & E. A. Lucas (Eds.), Arachidonic acid: dietary sources and general functions (pp. 21–32). New York: Nova Publishers.

    Google Scholar 

  9. Simopoulos, A. P. (2008). The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med, 23, 674–688.

    Article  Google Scholar 

  10. Sidhu, K. S. (2003). Health benefits and potential risks related to consumption of fish or fish oil. Regul Toxicol Pharmacol, 38(3), 336–344.

    Article  CAS  Google Scholar 

  11. Yokoo, E. M. (2003). Low level methylmercury exposure affects neruophysychological function in adults. Environ Health, 2, 1–11.

    Article  Google Scholar 

  12. Sun, J., Wang, X., & Liu, J. (2019). Screening of Isochrysis strains for simultaneous production of fucoxanthin and docosahexaenoic acid. Algal Res, 41, 101545.

    Article  Google Scholar 

  13. Jeyakumar, B., Asha, D., Varalakshmi, P., & Kathiresan, S. (2020). Nitrogen repletion favors cellular metabolism and improves eicosapentaenoic acid production in the marine microalga Isochrysis sp. CASA CC 101. Algal Res, 47, 101877.

    Article  Google Scholar 

  14. Qi, B., Beaudoin, F., Fraser, T., Stobart, A. K., Napier, J. A., & Lazarus, C. M. (2002). Identification of a cDNA encoding a novel C18-v9 polyunsaturated fatty acid-specific elongating activity from the docosahexaenoic acid (DHA)-producing microalga, Isochrysis galbana. FEBS Lett, 510(3), 159–165.

    Article  CAS  Google Scholar 

  15. Shi, T., Yu, A., Li, M., Ou, X., & Xing, L. (2012). Identification of a novel C22–∆4-producing docosahexaenoic acid (DHA) specific polyunsaturated fatty acid desaturase gene from Isochrysis galbana and its expression in Saccharomyces cerevisiae. Biotechnol Lett, 34(12), 2265–2274.

    Article  CAS  Google Scholar 

  16. Thiyagarajan, S., Arumugam, M., Senthil, N., Vellaikumar, S., & Kathiresan, S. (2018). Functional characterization and substrate specificity analysis of D6-desaturase from marine microalga Isochrysis sp. Biotechnol Lett, 40(3), 577–584.

    Article  CAS  Google Scholar 

  17. Knutzon, D. S., Thurmond, J. M., Huang, Y. S., Chaudhary, S., Bobik, E. G., Chan, G. M., Kirchner, S. J., & Mukerji, P. (1998). Identification of Delta5-desaturase from Mortierella alpina by heterologous expression in Bakers’ yeast and canola. J Biol Chem, 273, 29360–29366.

    Article  CAS  Google Scholar 

  18. Hong, H. P., Datla, N., MacKenzie, S. L., & Qiu, X. (2002). Isolation and characterization of a Delta-5 fatty acid desaturase from Pythium irregulare by heterologous expression in Saccharomyces cerevisiae and oilseed crops. Lipids, 37(9), 863–868.

    Article  CAS  Google Scholar 

  19. Huang, J. Z., Jiang, X. Z., Xia, X. F., Yu, A. Q., Mao, R. Y., Chen, X. F., & Tian, B. Y. (2010). Cloning and functional identification of delta5 fatty acid desaturase gene and its 5′-upstream region from marine fungus Thraustochytrium sp. FJN-10. Mar Biotechnol, 13, 12–21.

    Article  Google Scholar 

  20. Domergue, F., Lerchl, J., Zähringer, U., & Heinz, E. (2002). Cloning and functional characterization of Phaeodactylum tricornutum front-end desaturases involved in eicosapentaenoic acid biosynthesis. Eur J Biochem, 269(16), 4105–4113.

    Article  CAS  Google Scholar 

  21. Thiyagarajan, S., Arumugam, M., & Kathiresan, S. (2020). Identification and functional characterization of two novel fatty acid genes from marine microalgae for eicosapentaenoic acid production. Appl Biochem Biotechnol, 190(4), 1371–1384.

    Article  CAS  Google Scholar 

  22. Iskandarov, U., Khozin-Goldberg, I., & Cohen, Z. (2010). Identification and characterization of D12, D6, and D5 desaturases from the green microalga Parietochloris incise. Lipids, 45(6), 519–530.

    Article  CAS  Google Scholar 

  23. Ji, X. J., Ren, L. J., Nie, Z. K., Huang, H., & Ouyang, P. K. (2014). Fungal arachidonic acid-rich oil: Research, development and industrialization. Crit Rev Biotechnol, 34(3), 197–214.

    Article  CAS  Google Scholar 

  24. Guo, D. S., Ji, X. J., Ren, L. J., Li, G. L., & Huang, H. (2017). Improving docosahexaenoic acid production by Schizochytrium sp. using a newly designed high-oxygen-supply bioreactor. AICHE J, 63(10), 4278–4286.

    Article  CAS  Google Scholar 

  25. Ji, X. J., & Huang, H. (2018). Engineering microbes to produce polyunsaturated fatty acids. Trends Biotechnol, 18, 30265–30268.

    Google Scholar 

  26. Fatma, Z., Hartman, H., Poolman, M., Fell, D., Srivastava, S., Shakeel, T., & Yazdani, S. S. (2018). Model-assisted metabolic engineering of Escherichia coli for long chain alkane and alcohol production. Metab Eng, 46, 1–12.

    Article  CAS  Google Scholar 

  27. Amiri-Jami, M., Abdelhamid, A. G., Hazaa, M., Kakuda, Y., & Griffths, M. W. (2015). Recombinant production of omega-3 fatty acids by probiotic Escherichia coli Nissle 1917. FEMS Micobiol Lett, 362, fnv166.

    Article  Google Scholar 

  28. Amiri-Jami, M., & Griffiths, M. W. (2010). Recombinant production of omega-3 fatty acids in Escherichia coli using a gene cluster isolated from Shewanella baltica MAC1. J Appl Microbiol, 109, 1897–1905.

    Article  CAS  Google Scholar 

  29. Xu, Y., Niu, Y., & Kong, J. (2011). Heterologous overexpression of a novel delta-4 desaturase gene from the marine microalga Pavlova viridis in Escherichia coli as a Mistic fusion. World J Microbiol Biotechnol, 27(12), 2931–2937.

    Article  CAS  Google Scholar 

  30. Walne, P. R. (1970). Studies on the food value of nineteen genera of algae to juvenile bivalves of the genera Ostrea, Crassostrea, Mercenaria, and Mytilis. Fish Invest, 26, 1–62.

    Google Scholar 

  31. Sambrook, J., & Russell, D. (2001). Molecular cloning: A laboratory manual (3rd ed.). Cold Spring , NY: Cold Spring Harbor Laboratory.

    Google Scholar 

  32. Hashimoto, K., Yoshizawa, A. C., Okuda, S., Kuma, K., Goto, S., & Kanehisa, M. (2008). The repertoire of desaturases and elongases reveals fatty acid variations in 56 eukaryotic genomes. J Lipid Res, 49(1), 183–191.

    Article  CAS  Google Scholar 

  33. Wei, D. S., Li, M. C., Zhang, X. X., Zhou, H., & Xing, L. J. (2006). A novel Delta12-fatty acid desaturase gene from methylotrophic yeast Pichia pastoris GS115. Acta Biochim Pol, 53(4), 753–759.

    Article  CAS  Google Scholar 

  34. Tavares, S., Grotkjær, T., Obsen, T., Haslam, R. P., Napier, J. A., & Gunnarsson, N. (2011). Metabolic engineering of Saccharomyces cerevisiae for production of eicosapentaenoic acid, using a novel Δ5-desaturase from Paramecium tetraurelia. Appl Environ Microbiol, 77(5), 1854–1861.

    Article  CAS  Google Scholar 

  35. Ruiz-Lopez, N., Haslam, R. P., Napier, J. A., & Sayanova, O. (2014). Successful high-level accumulation of fish oil omega-3 long chain polyunsaturated fatty acids in a transgenic oilseed crop. Plant J, 77(2), 198–208.

    Article  CAS  Google Scholar 

  36. Aitzetmuller, K., & Tsevegsuren, N. (1994). Seed fatty acid “frontend” desaturases and chemotaxonomy-a case study in the Ranunculaceae. J Plant Physiol, 143(4-5), 538–543.

    Article  Google Scholar 

  37. Meesapyodsuk, D., & Qiu, X. (2012). The front-end desaturase: Structure, function, evolution and biotechnological use. Lipids, 47, 227–237.

    Article  CAS  Google Scholar 

  38. Ruminm, J., Bonnefond, H., Saint-Jean, B., Rouxel, C., Sciandra, A., Bernard, O., Cadoret, J. P., & Bougaran, G. (2015). The use of fluorescent Nile red and BODIPY for lipid measurement in microalgae. Biotechnol Biofuels, 8(1), 42.

    Article  Google Scholar 

  39. Li, S., Mai, K., Xu, W., Yuan, Y., Zhang, Y., & Ai, Q. (2014). Characterization, mRNA expression and regulation of Δ6 fatty acyl desaturase (FADS2) by dietary n−3 long chain polyunsaturated fatty acid (LC-PUFA) levels in grouper larvae (Epinephelus coioides). Aquaculture, 434, 212–219.

    Article  CAS  Google Scholar 

  40. Feng, Y., & Cronan, J. E. (2009). Escherichia coli unsaturated fatty acid synthesis. Complex transcription of the fabA gene in vivo identification of the essential reaction catalyzed by FabB. J Biol Chem, 284, 29526–29535.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank DBT-IPLS, NRCBS, CEGS, DST-PURSE, and UGC-CAS Phase III, School of Biological Sciences, Madurai Kamaraj University, Tamil Nadu, India, for the instrumentation facilities and the supports provided for this study. SK profoundly thanks Dr. Vikas Jain, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, India, for providing us with laboratory facilities to carry out Western blotting.

Funding

This work was supported by grants from Science and Engineering Research Board (SERB), Government of India (SB/EMEQ-219/2014, ECR/2017/002914).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kathiresan.

Ethics declarations

Conflict of Interest

All authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(JPG 49 kb)

ESM 2

(JPG 55 kb)

ESM 3

(DOC 179 kb)

ESM 4

(DOC 200 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thiyagarajan, S., Khandelwal, P., Senthil, N. et al. Heterologous Production of Polyunsaturated Fatty Acids in E. coli Using Δ5-Desaturase Gene from Microalga Isochrysis Sp.. Appl Biochem Biotechnol 193, 869–883 (2021). https://doi.org/10.1007/s12010-020-03460-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03460-1

Keywords

Navigation