Skip to main content

Advertisement

Log in

Enhancing the Performance of Microbial Fuel Cell by Using Chloroform Pre-treated Mixed Anaerobic Sludge to Control Methanogenesis in Anodic Chamber

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Formation of methane in the anodic chamber of a microbial fuel cell (MFC) indicates an energy inefficiency in electricity generation as the energy required for electrogenesis gets redirected to methanogenesis. The hypothesis of this research is that inhibition of methanogenesis in the mixed anaerobic anodic inoculum is associated with an enhanced activity of the electrogenic bacterial consortia. Hence, the primary objective of this investigation is to evaluate the ability of chloroform to inhibit the methanogenesis at different dosing to enhance the activity of electrogenic consortia in MFC. A higher methane inhibition and hence an enhanced performance of MFC was achieved when mixed anaerobic sludge, collected from septic tank, was used as inoculum after pre-treatment with 0.25% (v/v) chloroform dosing (MFC-0.25CF). The MFC-0.25CF attained a maximum power density of 8.51 W/m3, which was more than twice as that of MFC inoculated with untreated sludge. Also, a clear correlation between the chloroform dosing, methane inhibition, wastewater treatment, and power generation was established, which demonstrated the effectiveness of the technique in enhancing power generation in MFC along with adequate biodegradation of organic matter present in wastewater at an optimum chloroform dosing of 0.25% (v/v) to inhibit methanogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jiang, D., Li, B., Jia, W., & Lei, Y. (2010). Effect of inoculum types on bacterial adhesion and power production in microbial fuel cells. Applied Biochemistry and Biotechnology, 160(1), 182–196. https://doi.org/10.1007/s12010-009-8541-z.

    Article  CAS  PubMed  Google Scholar 

  2. Bhowmick, G. D., Neethu, B., Ghangrekar, M. M., & Banerjee, R. (2020). Improved performance of microbial fuel cell by in situ Methanogenesis suppression while treating fish market wastewater. Applied Biochemistry and Biotechnology. 192, 1060–1075. https://doi.org/10.1007/s12010-020-03366-y.

  3. Huang, J., Zhu, N., Cao, Y., Peng, Y., Wu, P., & Dong, W. (2014). Exoelectrogenic bacterium phylogenetically related to Citrobacter freundii, isolated from anodic biofilm of a microbial fuel cell. Applied Biochemistry and Biotechnology, 175(4), 1879–1891. https://doi.org/10.1007/s12010-014-1418-9.

    Article  CAS  PubMed  Google Scholar 

  4. Nevin, K. P., Richter, H., Covalla, S. F., Johnson, J. P., Woodard, T. L., Orloff, A. L., & Lovley, D. R. (2008). Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells. Environmental Microbiology, 10(10), 2505–2514. https://doi.org/10.1111/j.1462-2920.2008.01675.x.

    Article  CAS  PubMed  Google Scholar 

  5. Yuan, Y., Chen, Q., Zhou, S., Zhuang, L., & Hu, P. (2012). Improved electricity production from sewage sludge under alkaline conditions in an insert-type air-cathode microbial fuel cell. Journal of Chemical Technology and Biotechnology, 87(1), 80–86. https://doi.org/10.1002/jctb.2686.

    Article  CAS  Google Scholar 

  6. Hao, L., Lü, F., Li, L., Shao, L., & He, P. (2013). Response of anaerobes to methyl fluoride, 2-bromoethanesulfonate and hydrogen during acetate degradation. Journal of Environmental Sciences (China), 25(5), 857–864. https://doi.org/10.1016/S1001-0742(12)60203-4.

    Article  CAS  Google Scholar 

  7. Zhuang, L., Chen, Q., Zhou, S., Yuan, Y., & Yuan, H. (2012). Methanogenesis control using 2-bromoethanesulfonate for enhanced power recovery from sewage sludge in air-cathode microbial fuel cells. International Journal of Electrochemical Science, 7(7), 6512–6523. http://www.electrochemsci.org/papers/vol7/7076512.pdf. Accessed 13 Nov 2020.

  8. Jadhav, D. A., Chendake, A. D., Schievano, A., & Pant, D. (2019). Suppressing methanogens and enriching electrogens in bioelectrochemical systems. Bioresource Technology, 277, 148–156. https://doi.org/10.1016/j.biortech.2018.12.098.

    Article  CAS  PubMed  Google Scholar 

  9. Li, W.-W., Yu, H.-Q., & He, Z. (2013). Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies. Energy & Environmental Science, 7(3), 911–924. https://doi.org/10.1039/C3EE43106A.

    Article  Google Scholar 

  10. Chen, Y., Cheng, J. J., & Creamer, K. S. (2008). Inhibition of anaerobic digestion process: a review. Bioresource Technology, 99(10), 4044–4064. https://doi.org/10.1016/j.biortech.2007.01.057.

    Article  CAS  PubMed  Google Scholar 

  11. Czatzkowska, M., Harnisz, M., Korzeniewska, E., & Koniuszewska, I. (2020). Inhibitors of the methane fermentation process with particular emphasis on the microbiological aspect: a review. Energy Science and Engineering, 8(5), 1880–1897. https://doi.org/10.1002/ese3.609.

    Article  CAS  Google Scholar 

  12. Howland, J. L. (1995). The biochemistry of archaea (Archaebacteria). Biochemical Education, 26(2), 114. https://doi.org/10.1016/0307-4412(95)90682-7.

    Article  Google Scholar 

  13. Chen, J. L., Ortiz, R., Steele, T. W. J., & Stuckey, D. C. (2014). Toxicants inhibiting anaerobic digestion: a review. Biotechnology Advances, 32(8), 1523–1534. https://doi.org/10.1016/j.biotechadv.2014.10.005.

    Article  CAS  PubMed  Google Scholar 

  14. Yang, J., & Speece, R. E. (1986). The effects of chloroform toxicity on methane fermentation. Water Research, 20(10), 1273–1279. https://doi.org/10.1016/0043-1354(86)90158-2.

    Article  CAS  Google Scholar 

  15. Martinez-Fernandez, G., Denman, S. E., Yang, C., Cheung, J., Mitsumori, M., & McSweeney, C. S. (2016). Methane inhibition alters the microbial community, hydrogen flow, and fermentation response in the rumen of cattle. Frontiers in Microbiology, 7, 1122. https://doi.org/10.3389/fmicb.2016.01122.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bauchop, T. (1967). Inhibition of rumen methanogenesis by methane analogues. Journal of Bacteriology, 94(1), 171–175. https://doi.org/10.1128/jb.94.1.171-175.1967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Neethu, B., Pradhan, H., Sarkar, P., & Ghangrekar, M. M. (2019). Application of ion exchange membranes in enhancing algal production alongside desalination of saline water in microbial fuel cell. In MRS Advances, 4(19), 1077–1085. https://doi.org/10.1557/adv.2019.170.

  18. Bhowmick, G. D., Das, S., Adhikary, K., Ghangrekar, M. M., & Mitra, A. (2019). Using rhodium as a cathode catalyst for enhancing performance of microbial fuel cell. International Journal of Hydrogen Energy, 44(39), 22218–22222. https://doi.org/10.1016/j.ijhydene.2019.06.063.

    Article  CAS  Google Scholar 

  19. Neethu, B., Bhowmick, G. D., & Ghangrekar, M. M. (2019). A novel proton exchange membrane developed from clay and activated carbon derived from coconut shell for application in microbial fuel cell. Biochemical Engineering Journal, 148, 170–177. https://doi.org/10.1016/j.bej.2019.05.011.

    Article  CAS  Google Scholar 

  20. Bhowmick, G. D., Kibena-Põldsepp, E., Matisen, L., Merisalu, M., Kook, M., Kaärik, M. M., Leis, J., Sammelselg, V., Ghangrekar, M. M., & Tammeveski, K. (2019). Multi-walled carbon nanotube and carbide-derived carbon supported metal phthalocyanines as cathode catalysts for microbial fuel cell applications. Sustainable Energy & Fuels, 3(12), 3525–3537. https://doi.org/10.1039/c9se00574a.

    Article  CAS  Google Scholar 

  21. Neethu, B., Bhowmick, G. D., & Ghangrekar, M. M. (2018). Enhancement of bioelectricity generation and algal productivity in microbial carbon-capture cell using low cost coconut shell as membrane separator. Biochemical Engineering Journal, 133, 205–213. https://doi.org/10.1016/j.bej.2018.02.014.

    Article  CAS  Google Scholar 

  22. APHA/AWWA/WEF. (2012). Standard methods for the examination of water and wastewater. Standard Methods, 541.

  23. Li, X., Zhang, X., Zhao, X., Yu, B., Weng, L., & Li, Y. (2019). Efficient removal of metolachlor and bacterial community of biofilm in bioelectrochemical reactors. Applied Biochemistry and Biotechnology, 189(2), 384–395. https://doi.org/10.1007/s12010-019-03014-0.

    Article  CAS  PubMed  Google Scholar 

  24. Malvankar, N. S., Lau, J., Nevin, K. P., Franks, A. E., Tuominen, M. T., & Lovley, D. R. (2012). Electrical conductivity in a mixed-species biofilm. Applied and Environmental Microbiology, 78(16), 5967–5971. https://doi.org/10.1128/AEM.01803-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cario, B. P., Rossi, R., Kim, K. Y., & Logan, B. E. (2019). Applying the electrode potential slope method as a tool to quantitatively evaluate the performance of individual microbial electrolysis cell components. Bioresource Technology, 287, 121418. https://doi.org/10.1016/j.biortech.2019.121418.

    Article  CAS  PubMed  Google Scholar 

  26. Aelterman, P., Freguia, S., Keller, J., Verstraete, W., & Rabaey, K. (2008). The anode potential regulates bacterial activity in microbial fuel cells. Applied Microbiology and Biotechnology, 78(3), 409–418. https://doi.org/10.1007/s00253-007-1327-8.

    Article  CAS  PubMed  Google Scholar 

  27. Logan, B. E. (2007). Microbial fuel cells. Hoboken: John Wiley and Sons. https://doi.org/10.1002/9780470258590.

    Book  Google Scholar 

  28. Friman, H., Schechter, A., Ioffe, Y., Nitzan, Y., & Cahan, R. (2013). Current production in a microbial fuel cell using a pure culture of Cupriavidus basilensis growing in acetate or phenol as a carbon source. Microbial Biotechnology, 6(4), 425–434. https://doi.org/10.1111/1751-7915.12026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The research project was supported by Department of Biotechnology, Ministry of Science and Technology, Government of India (BT/EB/PAN IIT/2012) providing the financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Ghangrekar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tholia, V., Neethu, B., Bhowmick, G.D. et al. Enhancing the Performance of Microbial Fuel Cell by Using Chloroform Pre-treated Mixed Anaerobic Sludge to Control Methanogenesis in Anodic Chamber. Appl Biochem Biotechnol 193, 846–855 (2021). https://doi.org/10.1007/s12010-020-03458-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03458-9

Keywords

Navigation