Skip to main content
Log in

Deacidification of Microalgal Oil with Alkaline Microcrystalline Cellulose

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Microalgal oil is considered a promising candidate for edible oils. However, investigation of the refining processes of microalgal oil has been limited, especially deacidification. In this work, microcrystalline cellulose (MCC) was pretreated using different methods and utilized for the first time in the deacidification of microalgal oil. Detection results from FTIR and XRD indicated alkali pretreatment had a significant effect on the structure of MCC. Some inter- and intramolecular hydrogen bonds in AMCC (alkali-pretreated MCC) were destroyed, and crystallinity index of cellulose decreased, which increased its adsorption capacity and the reaction of OH groups with free fatty acids. Some NaOH was adsorbed into AMCC through cellulose swelling, which also contributed to deacidification. The interaction with oil was also improved with many cracks and voids on the surface of AMCC. AMCC could reduce the acid value to about 2 mg KOH/g. Comparatively, original MCC and MCC pretreated with microwave or ultrasound did not exhibit the ability to deacidify. Furthermore, the conditions of alkali treatment were optimized. Treatment with 20% NaOH for 20 min was optimal. Compared with other adsorbents, such as sodium silicate and chitosan treated with alkali and resin, only AMCC could effectively reduce acid value while maintaining high lipid recovery. Therefore, AMCC was considered a better adsorbent for the deacidification of microalgal oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306.

    Article  CAS  Google Scholar 

  2. Xue, Z., Wan, F., Yu, W., Liu, J., Zhang, Z., & Kou, X. (2018). Edible oil production from microalgae: a review. European Journal of Lipid Science and Technology, 120, 1700428.

    Article  Google Scholar 

  3. Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable and Sustainable Energy Reviews, 14(1), 217–232.

    Article  CAS  Google Scholar 

  4. Huang, Y., Zhang, D., Xue, S., Wang, M., & Cong, W. (2016). The potential of microalgae lipids for edible oil production. Applied Biochemistry and Biotechnology, 180(3), 438–451.

    Article  CAS  Google Scholar 

  5. Mori, T. A. (2014). Dietary n-3 PUFA and CVD: a review of the evidence. The Proceedings of the Nutrition Society., 73(1), 57–64.

    Article  CAS  Google Scholar 

  6. Marventano, S., Kolacz, P., Castellano, S., Galvano, F., Buscemi, S., Mistretta, A., & Grosso, G. (2015). A review of recent evidence in human studies of n-3 and n-6 PUFA intake on cardiovascular disease, cancer, and depressive disorders: does the ratio really matter? International Journal of Food Sciences and Nutrition, 66(6), 611–622.

    Article  Google Scholar 

  7. Bhosle, B. M., & Subramanian, R. (2005). New approaches in deacidification of edible oils––a review. Journal of Food Engineering, 69(4), 481–494.

    Article  Google Scholar 

  8. Ryckebosch, E., Bruneel, C., Termote-Verhalle, R., Lemahieu, C., Muylaert, K., Van Durme, J., Goiris, K., & Foubert, I. (2013). Stability of omega-3 LC-PUFA-rich photoautotrophic microalgal oils compared to commercially available omega-3 LC-PUFA oils. Journal of Agricultural and Food Chemistry, 61(42), 10145–10155.

    Article  CAS  Google Scholar 

  9. Ryckebosch, E., Bruneel, C., Termote-Verhalle, R., Muylaert, K., & Foubert, I. (2014). Influence of extraction solvent system on extractability of lipid components from different microalgae species. Algal Research, 3, 36–43.

    Article  Google Scholar 

  10. Ladhe, A. R., & Krishna Kumar, N. S. (2010). Application of membrane technology in vegetable oil processing. In Z. F. Cui & H. S. Muralidhara (Eds.), Membrane technology-a practical guide to membrane technology and applications in food and bioprocessing (pp. 63–78). Oxford: Butterworth-Heinemann.

    Google Scholar 

  11. Sathivel, S., & Prinyawiwatkul, W. (2004). Adsorption of FFA in crude catfish oil onto chitosan, activated carbon, and activated earth: a kinetics study. Journal of the American Oil Chemists' Society, 81(5), 493–496.

    Article  CAS  Google Scholar 

  12. Gil, B., Kim, M., Kim, J. H., & Yoon, S. H. (2014). Comparative study of soybean oil refining using rice hull silicate and commercial adsorbents. Food Science and Biotechnology, 23(4), 1025–1028.

    Article  CAS  Google Scholar 

  13. Deboni, T. M., Batista, E. A. C., & Meirelles, A. J. A. (2015). Equilibrium, kinetics, and thermodynamics of soybean oil deacidification using a strong anion exchange resin. Industrial and Engineering Chemistry Research, 54(44), 11167–11179.

    Article  CAS  Google Scholar 

  14. Garba, Z. N., Lawan, I., Zhou, W., Zhang, M., Wang, L., & Yuan, Z. (2020). Microcrystalline cellulose (MCC) based materials as emerging adsorbents for the removal of dyes and heavy metals – a review. Science of The Total Environment., 717, 135070.

    Article  CAS  Google Scholar 

  15. Fan, J., De Bruyn, M., Budarin, V. L., Gronnow, M. J., Shuttleworth, P. S., Breeden, S., Macquarrie, D. J., & Clark, J. H. (2013). Direct microwave-assisted hydrothermal depolymerization of cellulose. Journal of the American Chemical Society, 135(32), 11728–11731.

    Article  CAS  Google Scholar 

  16. Široký, J., Blackburn, R. S., Bechtold, T., Taylor, J., & White, P. (2011). Alkali treatment of cellulose II fibres and effect on dye sorption. Carbohydrate Polymers, 84(1), 299–307.

    Article  Google Scholar 

  17. Aimin, T., Hongwei, Z., Gang, C., Guohui, X., & Wenzhi, L. (2005). Influence of ultrasound treatment on accessibility and regioselective oxidation reactivity of cellulose. Ultrasonics Sonochemistry, 12(6), 467–472.

    Article  Google Scholar 

  18. Wang, W., Liu, C., Huang, F., Li, W., & Yang, B. (2017). Adsorption behavior of free fatty acids and micro-components in rapeseed oil on alkaline microcrystalline cellulose. Oil, Crop Science., 2, 225–236.

    CAS  Google Scholar 

  19. Wang, W., Liu, C., Huang, F., Li, W., & Yang, B. (2016). Application of alkaline microcrystalline cellulose in deacidification of tea seed oil. Chinese Journal of Oil Crop Sciences., 38, 247–253.

    CAS  Google Scholar 

  20. Li, Q., Zhou, Z., Zhang, D., Wang, Z., & Cong, W. (2019). Lipid extraction from Nannochloropsis oceanica biomass after extrusion pretreatment with twin-screw extruder: optimization of processing parameters and comparison of lipid quality. Bioprocess and Biosystems Engineering, 43, 655–662.

    Article  Google Scholar 

  21. Peng, H., Chen, H., Qu, Y., Li, H., & Xu, J. (2014). Bioconversion of different sizes of microcrystalline cellulose pretreated by microwave irradiation with/without NaOH. Applied Energy, 117, 142–148.

    Article  CAS  Google Scholar 

  22. Liu, C., Wang, W., Huang, F., & Yang, B. (2016). Preparation of alkaline microcrystalline cellulose and its adsorption behavior on free fatty acids in rapeseed oil. China Oils & Fats., 41, 24–28.

    Google Scholar 

  23. Meng, X., Ye, Q., Pan, Q., Ding, Y., Wei, M., Liu, Y., & van de Voort, F. R. (2014). Total phospholipids in edible oils by in-vial solvent extraction coupled with FTIR analysis. Journal of Agricultural and Food Chemistry, 62(14), 3101–3107.

    Article  CAS  Google Scholar 

  24. Owolabi, A. F., Haafiz, M. K., Hossain, M. S., Hussin, M. H., & Fazita, M. R. (2017). Influence of alkaline hydrogen peroxide pre-hydrolysis on the isolation of microcrystalline cellulose from oil palm fronds. International Journal of Biological Macromolecules, 95, 1228–1234.

    Article  CAS  Google Scholar 

  25. Xu, Y., Xu, Y., & Yue, X. (2016). Changes of hydrogen bonding and aggregation structure of cellulose fiber due to microwave-assisted alkali treatment and its impacts on the application as fluff pulp. Cellulose., 24, 967–976.

    Article  Google Scholar 

  26. Jinbao, L., Feiyan, M., Huijuan, X., Rui, C., Pan, F., Xue, Y., & Xin, Z. (2020). Effect of alkali pretreatment on preparation of microcrystalline cellulose. China Pulp & Paper., 39, 26–32.

    Google Scholar 

  27. Eronen, P., Österberg, M., & Jääskeläinen, A.-S. (2008). Effect of alkaline treatment on cellulose supramolecular structure studied with combined confocal Raman spectroscopy and atomic force microscopy. Cellulose., 16, 167–178.

    Article  Google Scholar 

  28. Schenzel, K., & Fischer, S. (2001). NIR FT Raman spectroscopy–a rapid analytical tool for detecting the transformation of cellulose polymorphs. Cellulose., 8(1), 49–57.

    Article  CAS  Google Scholar 

  29. Kunusa, W. R., Isa, I., Laliyo, L. A. R., & Iyabu, H. (2018). FTIR, XRD and SEM analysis of microcrystalline cellulose (MCC) fibers from corncorbs in alkaline treatment. Journal of Physics Conference Series, 1028, 012199.

    Article  Google Scholar 

  30. Takács, E., Wojnárovits, L., Földváry, C., Borsa, J., & Sajó, I. (2001). Radiation activation of cotton-cellulose prior to alkali treatment. Research on Chemical Intermediates, 27, 837–845.

    Article  Google Scholar 

  31. Xu, N., Xue, F., & Ding, E. (2018). Nonisothermal crystallization kinetics in isotactic polypropylene/microcrystalline cellulose (II) composites. Polymer Composites, 39, 1064–1075.

    Article  CAS  Google Scholar 

  32. Kalita, R. D., Nath, Y., Ochubiojo, M. E., & Buragohain, A. K. (2013). Extraction and characterization of microcrystalline cellulose from fodder grass; Setaria glauca (L) P. Beauv, and its potential as a drug delivery vehicle for isoniazid, a first line antituberculosis drug. Colloids and Surfaces. B, Biointerfaces, 108, 85–89.

    Article  CAS  Google Scholar 

  33. Goswami, P., Blackburn, R. S., El-Dessouky, H. M., Taylor, J., & White, P. (2009). Effect of sodium hydroxide pre-treatment on the optical and structural properties of lyocell. European Polymer Journal, 45(2), 455–465.

    Article  CAS  Google Scholar 

  34. Yan-kai, Y., Yu-fang, C., & Cheng-yong, H. (2005). The structure transformation of alkaline cellulose in ethanol. Journal of Cellulose Science and Technology., 13, 37–41.

    Google Scholar 

  35. Owoeye, S. S., Jegede, F. I., & Borisade, S. G. (2020). Preparation and characterization of nano-sized silica xerogel particles using sodium silicate solution extracted from waste container glasses. Materials Chemistry and Physics, 248, 122915.

    Article  CAS  Google Scholar 

  36. Liu, Y. E. E., Wang, L., & Wang, J. (2019). Application of special silica gel in oil refining process. China Oils and Fats., 44, 16–20.

    Google Scholar 

Download references

Funding

This work was supported by the National Key R&D Program of China (2018YFD0401105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongmei Zhang.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Zhou, Z., Zhang, D. et al. Deacidification of Microalgal Oil with Alkaline Microcrystalline Cellulose. Appl Biochem Biotechnol 193, 952–964 (2021). https://doi.org/10.1007/s12010-020-03457-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03457-w

Keywords

Navigation