Skip to main content
Log in

Bioconversion of Stevioside to Rebaudioside E Using Glycosyltransferase UGTSL2

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Rebaudioside E, one of the minor components of steviol glycosides, was first isolated and identified from Stevia rebaudiana in 1977. It is a high-intensity sweetener that tastes about 150–200 times sweeter than sucrose and is also a precursor for biosynthesis of rebaudioside D and rebaudioside M, the next-generation Stevia sweeteners. In this work, new unknown steviol glycosides were enzymatically synthesized from stevioside by coupling UDP-glucosyltransferase UGTSL2 from Solanum lycopersicum and sucrose synthase StSUS1 from Solanum tuberosum. Rebaudioside E was speculated to be the main product of glucosylation of the Glc(β1→C-19) residue of stevioside along with the formation of a (β1→2) linkage based on the analysis of the regioselectivity and stereoselectivity of UGTSL2, and verified afterwards by LC-MS/MS with standard. In a 20-ml bioconversion reaction of 20 g/l stevioside by UGTSL2 and StSUS1, 15.92 g/l rebaudioside E was produced for 24 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tasso, I. S., Santos, T. G., & Seibel, N. F. (2019). Elaboration of a natural sweetener using erythritol/stevia. Food Sci Technol Campinas, Online ahead of Print, 40(2), 370–375. https://doi.org/10.1590/fst.42718.

    Article  Google Scholar 

  2. Olsson, K., Carlsen, S., Semmler, A., Simon, E., Mikkelsen, M. D., & Moller, B. L. (2016). Microbial production of next-generation stevia sweeteners. Microbial Cell Factories, 15(1), 207–220.

    Article  Google Scholar 

  3. Goyal, S. K., & Samsher, & Goyal, R. K. (2010). Stevia (Stevia rebaudiana) a bio-sweetener: a review. International Journal of Food Sciences and Nutrition, 61(1), 1–10.

    Article  CAS  Google Scholar 

  4. Roberto, L. M., Antonio, V. G., Liliana, Z. B., & Kong, A. H. (2012). Stevia rebaudiana Bertoni, source of a high-potency natural sweetener: a comprehensive review on the biochemical, nutritional and functional aspects. Food Chemistry, 132, 1121–1132.

    Article  Google Scholar 

  5. Tao, R., & Cho, S. (2020). Consumer-based sensory characterization of steviol glycosides (rebaudioside A, D, and M). Foods, 9(8), 1026–1040.

    Article  CAS  Google Scholar 

  6. Prakash, I., Bunders, C., Devkota, K. P., Charan, R. D., Ramirez, C., Snyder, T. M., et al. (2014). Bioconversion of rebaudioside I from rebaudioside A. Molecules, 19(11), 17345–17355.

    Article  Google Scholar 

  7. Wang, Y., Chen, L. L., Li, Y., Li, Y. Y., Yan, M., Chen, K. Q., et al. (2016). Efficient enzymatic production of rebaudioside A from stevioside. Bioscience, Biotechnology, and Biochemistry, 80(1), 67–73.

    Article  CAS  Google Scholar 

  8. Li, Y., Li, Y. Y., Wang, Y., Chen, L. L., Yan, M., Chen, K. Q., et al. (2016). Production of rebaudioside A from stevioside catalyzed by the engineered Saccharomyces cerevisiae. Applied Biochemistry and Biotechnology, 178(8), 1586–1598.

    Article  CAS  Google Scholar 

  9. Chen, L. L., Sun, P., Zhou, F. F., Li, Y., Chen, K. Q., Jia, H. H., et al. (2018). Synthesis of rebaudioside D, using glycosyltransferase UGTSL2 and in situ UDP-glucose regeneration. Food Chemistry, 259, 286–291.

    Article  CAS  Google Scholar 

  10. Bursać Kovačević, D., Maras, M., Barba, F. J., Granato, D., Roohinejad, S., Mallikarjunan, K., Montesano, D., Lorenzo, J. M., & Putnik, P. (2018). Innovative technologies for the recovery of phytochemicals from Stevia rebaudiana Bertoni leaves: a review. Food Chemistry, 268, 513–521.

    Article  Google Scholar 

  11. Dong, J. P., & Yang, Z. (2019). Characterization of a new hemihydrate rebaudioside B crystal having lower aqueous solubility. Food Chem, 304, Article 125444. DOI: https://doi.org/10.1016/j.foodchem.2019.125444.

  12. Sakai, S., & Shinma, N. (1977). Application of 13C-NMR spectroscopy to chemistry of natural glycosides: rebaudioside-C, a new sweet diterpene glycosides of Stevia rebaudiana. Chemical & Pharmaceutical Bulletin, 25, 844–846.

    Article  Google Scholar 

  13. Sakamoto, I., Yamasaki, K., & Tanaka, O. (1977). Application of 13C-NMR spectroscopy to chemistry of plant glycosides: rebaudioside-D and -E, new sweet diterpene-glucosides of Stevia rebaudiana Bertoni. Chemical & Pharmaceutical Bulletin, 25(12), 3437–3439.

    Article  CAS  Google Scholar 

  14. Ohta, M., Sasa, S., Inoue, A., Tamai, T., Fujita, I., Morita, K., & Matsuura, F. (2010). Characterization of novel steviol glycosides from leaves of Stevia rebaudiana Morita. Journal of Applied Glycoscience, 57(3), 199–209.

    Article  CAS  Google Scholar 

  15. Prakash, I., Bunders, C., Devkota, K. P., Charan, R. D., Ramirez, C., Parikh, M., & Markosyan, A. (2014). Isolation and structure elucidation of rebaudioside D2 from bioconversion reaction of rebaudioside A to rebaudioside D. Natural Product Communications, 9(8), 1135–1138.

    Article  CAS  Google Scholar 

  16. Starratt, A. N., Kirby, C. W., Pocs, R., & Brandle, J. E. (2002). Rebaudioside F, a diterpene glycoside from Stevia rebaudiana. Phytochemistry, 59(4), 367–370.

    Article  CAS  Google Scholar 

  17. Prakash, I., Chaturvedula, V. S. P., & Markosyan, A. (2013). Isolation, characterization and sensory evaluation of a hexa beta-D-glucopyranosyl diterpene from Stevia rebaudiana. Natural Product Communications, 8, 1523–1526.

    Article  CAS  Google Scholar 

  18. Prakash, I., Bunders, C., Devkota, K. P., Charan, R. D., Ramirez, C., Priedemann, C., et al. (2014). Isolation and characterization of a novel rebaudioside M isomer from a bioconversion reaction of rebaudioside A and NMR comparison studies of rebaudioside M isolated from Stevia rebaudiana Bertoni and Stevia rebaudiana Morita. Biomolecules, 4(2), 374–389.

    Article  Google Scholar 

  19. Perera, W. H., Ghiviriga, I., Rodenburg, D. L., Alves, K., Bowling, J. J., Avula, B., Khan, I. A., & McChesney, J. D. (2017). Rebaudiosides T and U, minor C-19 xylopyranosyl and arabinopyranosyl steviol glycoside derivatives from Stevia rebaudiana (Bertoni) Bertoni. Phytochemistry, 135, 106–114.

    Article  CAS  Google Scholar 

  20. Chatsudthipong, V., & Muanprasat, C. (2009). Stevioside and related compounds: therapeutic benefits beyond sweetness. Pharmacology & Therapeutics, 121(1), 41–54.

    Article  CAS  Google Scholar 

  21. Weng, J. Y., Chen, L. L., Cheng, Y. C., Li, Y., Jia, H. H., Zhou, H., et al. (2019). Expression, characterization, and site-directed mutagenesis of UDP-glycosyltransferase UGT88A1 from Arabidopsis thaliana. Bioengineered, 10(1), 142–149.

    Article  CAS  Google Scholar 

  22. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248–254.

    Article  CAS  Google Scholar 

  23. Chen, L. L., Sun, P., Li, Y., Yan, M., Xu, L., Chen, K. Q., et al. (2017). A fusion protein strategy for soluble expression of Stevia glycosyltransferase UGT76G1 in Escherichia coli. 3 Biotech, 7, Article 356. DOI: https://doi.org/10.1007/s13205-017-0943-y.

  24. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428.

    Article  CAS  Google Scholar 

  25. Li, J., Chen, Z. B., & Di, D. L. (2012). Preparative separation and purification of rebaudioside A from Stevia rebaudiana Bertoni crude extracts by mixed bed of macroporous adsorption resins. Food Chemistry, 132(1), 268–276.

    Article  CAS  Google Scholar 

  26. Molina-Calle, M., Priego-Capote, F., & Luque de Castro, M. D. (2017). Characterization of Stevia leaves by LC–QTOF MS/MS analysis of polar and non-polar extracts. Food Chemistry, 219, 329–338.

    Article  CAS  Google Scholar 

  27. Sun, Y. W., Chen, Z., Li, J. X., Li, J. H., Lv, H. J., Yang, J. Y., et al. (2018). Diterpenoid UDP-glycosyltransferases from Chinese sweet tea and ashitaba complete the biosynthesis of rubusoside. Molecular Plant, 11(10), 1308–1311.

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the NSFC-China (21878155), Provincial Key R&D Plan of Jiangsu-China (BE2017703), PAPD-China, Qing Lan Project of Jiangsu Universities-China, Six Talent Peaks Project in Jiangsu Province-China, and Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture-China.

Author information

Authors and Affiliations

Authors

Contributions

LC and YL conceived and designed the study. LC, HP, and RC performed the experiments and analyzed the data. LC wrote the paper. HJ, KC, MY, and PO reviewed and edited the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Yan Li.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 516 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Pan, H., Cai, R. et al. Bioconversion of Stevioside to Rebaudioside E Using Glycosyltransferase UGTSL2. Appl Biochem Biotechnol 193, 637–649 (2021). https://doi.org/10.1007/s12010-020-03439-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03439-y

Keywords

Navigation