Skip to main content
Log in

Co-Digestion Biomethane Production and the Effect of Nanoparticle: Kinetics Modeling and Microcalorimetry Studies

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

To improve the production rate of methane, powder-activated carbon (PAC), granule activated carbon (GAC), titanium dioxide-anatase (TiO2), and synthesized zeolite (permutit) were added in the co-digestion process. The co-substrates were corn stover (CS) and pig manure (PM) mixed in the ratio of 1:2 (w/w). The kinetic analysis model and ADM1da model were applied to obtain the kinetic parameters of the process. Besides, the heat flow analysis of the co-digestion process was determined using isothermal microcalorimetry. The addition of the PAC, GAC, TiO2, and synthesized zeolite improved the methane cumulative yield by 40.12, 31.25, 31.17, and 43.74% respectively, as compared with the control reactor. The kinetic analysis and ADM1da model results indicated that the overall rate constant of the co-digestion process increased by 1.5 times averagely because of the effect of these materials. It was also observed that much higher heat energy released from the experimental sample compared with the control reactor, which indicated that the improvement of the metabolic process of the AcoD system. The addition of TiO2-anatase improved methane production by 31.17%, which could be a promising method to improve the biomethane in a large-scale due to its availability and accessibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. De Vrieze, J., Colica, G., Pintucci, C., Sarli, J., Pedizzi, C., Willeghems, G., Bral, A., Varga, S., Prat, D., Peng, L., Spiller, M., Buysse, J., Colsen, J., Benito, O., Carballa, M., & Vlaeminck, S.-E. (2019). Resource recovery from pig manure via an integrated approach: A technical and economic assessment for full-scale applications. Bioresource Technology, 272, 582–593.

    PubMed  Google Scholar 

  2. Rodriguez, C. S. (2008). Exploitation of biological wastes for the production of value-added products under solid-state fermentation conditions. Biotechnology Journal, 3(7), 859–870.

    Google Scholar 

  3. Sondergaard, M.-M., Fotidis, I.-A., Kovalovszki, A., & Angelidaki, I. (2015). Anaerobic co-digestion of agricultural byproducts with manure for enhanced biogas production. Energy & Fuels, 29(12), 8088–8094.

    Google Scholar 

  4. Thamsiriroj, T., & Murphy, J.-D. (2011). A critical review of the applicability of biodiesel and grass biomethane as biofuels to satisfy both biofuel targets and sustainability criteria. Applied Energy, 88(4), 1008–1019.

    CAS  Google Scholar 

  5. Hagos, K., Zong, J., Li, D., Liu, C., & Lu, X. (2017). Anaerobic co-digestion process for biogas production: progress, challenges and perspectives. Renewable & Sustainable Energy Reviews, 76, 1485–1496.

    CAS  Google Scholar 

  6. Astals, S., Ariso, M., Gali, A., & Mata-Alvarez, J. (2011). Co-digestion of pig manure and glycerine: experimental and modelling study. Journal of Environmental Management, 92(4), 1091–1096.

    CAS  PubMed  Google Scholar 

  7. Giuliano, A., Bolzonella, D., Pavan, P., Cavinato, C., & Cecchi, F. (2013). Co-digestion of livestock effluents, energy crops and agro-waste: feeding and process optimization in mesophilic and thermophilic conditions. Bioresource Technology, 128, 612–618.

    CAS  PubMed  Google Scholar 

  8. Chen, J.-H., Lin, C.-C., & Wang, K.-S. (2013). Potential of methane production by thermophilic anaerobic co-digestion of pulp and paper sludge with pig manure. Journal of Biobased Materials and Bioenergy, 7(2), 300–304.

    CAS  Google Scholar 

  9. Astals, S., Nolla-Ardevol, V., & Mata-Alvarez, J. (2013). Thermophilic co-digestion of pig manure and crude glycerol: process performance and digestate stability. Journal of Biotechnology, 166(3), 97–104.

    CAS  PubMed  Google Scholar 

  10. Liu, F., Rotaru, A., Shrestha, P.-M., Malvankar, N.-S., Nevin, K.-P., & Lovley, D.-R. (2012). Promoting direct interspecies electron transfer with activated carbon. Energy & Environmental Science, 5(10), 8982–8989.

    CAS  Google Scholar 

  11. Bourikas, K., Kordulis, C., & Lycourghiotis, A. (2014). Titanium dioxide (anatase and rutile): Surface chemistry, liquid-solid interface chemistry, and scientific synthesis of supported catalysts. Chemical Reviews (Washington, DC, United States), 114, 9754–9823.

    CAS  Google Scholar 

  12. Zheng, X., Wu, L., Chen, Y., Su, Y., Wan, R., Liu, K., & Huang, H. (2015). Effects of titanium dioxide and zinc oxide nanoparticles on methane production from anaerobic co-digestion of primary and excess sludge. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering, 50, 913–921.

    CAS  Google Scholar 

  13. Ajaya, C. M., Sooraj, M., Dineshaa, P., & Rosenb, M. A. (2020). Review of impact of nanoparticle additives on anaerobic digestion and methane generation. Fuel, 277, 118234.

    Google Scholar 

  14. Farghali, M., Andriamanohiarisoamanana, F. J., Ahmed, M. M., Kotb, S., Yamashiro, T., Iwasaki, M., & Umetsu, K. (2019). Impacts of iron oxide and titanium dioxide nanoparticles on biogas production: hydrogen sulfide mitigation, process stability, and prospective challenges. Journal of Environmental Management., 240, 160–167.

    CAS  PubMed  Google Scholar 

  15. Montalvo, S., Guerrero, L., Borja, R., Sanchez, E., Milan, Z., Cortes, I., & Angeles De La La Rubia, M. (2012). Application of natural zeolites in anaerobic digestion processes: a review. Applied Clay Science, 58, 125–133.

    CAS  Google Scholar 

  16. Wang, X., Zhang, L., Xi, B., Sun, W., Xia, X., Zhu, C., He, X., Li, M., Yang, T., Wang, P., & Zhang, Z. (2015). Biogas production improvement and c/n control by natural clinoptilolite addition into anaerobic co-digestion of phragmites australis, feces and kitchen waste. Bioresource Technology, 180, 192–199.

    CAS  PubMed  Google Scholar 

  17. Cavinato, C., Fatone, F., Bolzonella, D., & Pavan, P. (2010). Thermophilic anaerobic co-digestion of cattle manure with agro-wastes and energy crops: comparison of pilot and full scale experiences. Bioresource Technology, 101(2), 545–550.

    CAS  PubMed  Google Scholar 

  18. Mata-Alvarez, J., Dosta, J., Romero-Gueiza, M.-S., Fonoll, X., Peces, M., & Astals, S. (2014). A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renewable & Sustainable Energy Reviews, 36, 412–427.

    CAS  Google Scholar 

  19. Astals, S., Musenze, R.-S., Bai, X., Tannock, S., Tait, S., Pratt, S., & Jensen, P.-D. (2015). Anaerobic co-digestion of pig manure and algae: impact of intracellular algal products recovery on co-digestion performance. Bioresource Technology, 181, 97–104.

    CAS  PubMed  Google Scholar 

  20. Fonoll, X., Astals, S., Dosta, J., & Mata-Alvarez, J. (2015). Anaerobic co-digestion of sewage sludge and fruit wastes: evaluation of the transitory states when the co-substrate is changed. Chemical Engineering Journal, 262, 1268–1274.

    CAS  Google Scholar 

  21. Hubenov, V.-N., Mihaylova, S.-N., & Simeonov, I.-S. (2015). Anaerobic co-digestion of waste fruits and vegetables and swine manure in a pilot-scale bioreactor. Bulgarian Chemical Communications, 47, 788–792.

    Google Scholar 

  22. Dareioti, M.-A., & Kornaros, M. (2015). Anaerobic mesophilic co-digestion of ensiled sorghum, cheese whey and liquid cow manure in a two-stage cstr system: effect of hydraulic retention time. Bioresource Technology, 175, 553–562.

    CAS  PubMed  Google Scholar 

  23. Arnell, M., Astals, S., Amand, L., Batstone, D.-J., Jensen, P.-D., & Jeppsson, U. (2016). Modelling anaerobic co-digestion in benchmark simulation model no. 2: parameter estimation, substrate characterisation and plant-wide integration. Water Research, 98, 138–146.

    CAS  PubMed  Google Scholar 

  24. Badshah, M., Duong, M.-L., Liu, J., & Mattiasson, B. (2012). Use of an automatic methane potential test system for evaluating the biomethane potential of sugarcane bagasse after different treatments. Bioresource Technology, 114, 262–269.

    CAS  PubMed  Google Scholar 

  25. Rice, E.-W., Baird, R.-B., Eaton, A.-D., & Clesceri, L.-S. (2012). Standard methods for the examination of water and wastewater. Washington D.C.: American Public Health Association, American Water Works, Water Environment Federation.

    Google Scholar 

  26. Priyadarshini, R., Vaishnavi, L., Murugan, D., Sivarajan, M., Sivasamy, A., Saravanan, P., Balasubramanian, N., & Rai, C.-L. (2015). Kinetic studies on anaerobic co-digestion of ultrasonic disintegrated feed and biomass and its effect substantiated by microcalorimetry. International journal of Environmental Science and Technology, 12(9), 3029–3038.

    CAS  Google Scholar 

  27. Tkhilaishvili, T., Di Luca, M., Abbandonato, G., Maiolo, E.-M., Klatt, A., Reuter, M., Moencke-Buchner, E., & Trampuz, A. (2018). Real-time assessment of bacteriophage t3-derived antimicrobial activity against planktonic and biofilm-embedded escherichia coli by isothermal microcalorimetry. Research in Microbiology, 169(9), 515–521.

    CAS  PubMed  Google Scholar 

  28. Batstone, D.-J., Keller, J., Angelidaki, I., Kalyuzhnyi, S.-V., Pavlostathis, S.-G., Rozzi, A., Sanders, W.-T.-M., Siegrist, H., & Vavilin, V.-A. (2002). The iwa anaerobic digestion model no 1 (adm1). Water Science and Technology, 45(10), 65–73.

    CAS  PubMed  Google Scholar 

  29. Koch, K., Luebken, M., Gehring, T., Wichern, M., & Horn, H. (2010). Biogas from grass silage - measurements and modeling with adm1. Bioresource Technology, 101(21), 8158–8165.

    CAS  PubMed  Google Scholar 

  30. Mendes, C., Esquerre, K., & Queiroz, L.-M. (2015). Application of anaerobic digestion model no. 1 for simulating anaerobic mesophilic sludge digestion. Waste Management, 35, 89–95.

    CAS  PubMed  Google Scholar 

  31. Montecchio, D., Gallipoli, A., Gianico, A., Mininni, G., Pagliaccia, P., & Braguglia, C.-M. (2017). Biomethane potential of food waste: modeling the effects of mild thermal pretreatment and digestion temperature. Environmental Technology, 38(11), 1452–1464.

    CAS  PubMed  Google Scholar 

  32. Fonseca, A., Ames, D.-P., Yang, P., Botelho, C., Boaventura, R., & Vilar, V. (2014). Watershed model parameter estimation and uncertainty in data-limited environments. Environmental Modelling & Software, 51, 84–93.

    Google Scholar 

  33. Yang, Y., Zhang, Y., Li, Z., Zhao, Z., Quan, X., & Zhao, Z. (2017). Adding granular activated carbon into anaerobic sludge digestion to promote methane production and sludge decomposition. Journal of Cleaner Production, 149, 1101–1108.

    CAS  Google Scholar 

  34. Xu, S., He, C., Luo, L., Lu, F., He, P., & Cui, L. (2015). Comparing activated carbon of different particle sizes on enhancing methane generation in upflow anaerobic digester. Bioresource Technology, 196, 606–612.

    CAS  PubMed  Google Scholar 

  35. Cervantes-Avilés, P., Ida, J., Toda, T., & Cuevas-Rodríguez, G. (2018). Effects and fate of TiO2 nanoparticles in the anaerobic treatment of wastewater and waste sludge. Journal of Environmental Management, 222, 227–233.

    PubMed  Google Scholar 

  36. de Boer, H.-C. (2008). Co-digestion of animal slurry can increase short-term nitrogen recovery by crops. Journal of Environmental Quality, 37(5), 1968–1973.

    PubMed  Google Scholar 

  37. Arthurson, V. (2009). Closing the global energy and nutrient cycles through application of biogas residue to agricultural land - potential benefits and drawbacks. Energies, 2(2), 226–242.

    CAS  Google Scholar 

  38. Wett, B., Eladawy, A., & Ogurek, M. (2006). Description of nitrogen incorporation and release in adm1. Water Science and Technology, 54(4), 67–76.

    CAS  PubMed  Google Scholar 

  39. Mahmoud, N., Zeeman, G., Gijzen, H., & Lettinga, G. (2004). Anaerobic stabilisation and conversion of biopolymers in primary sludge - effect of temperature and sludge retention time. Water Research, 38(4), 983–991.

    CAS  PubMed  Google Scholar 

  40. Parker, W.-J. (2005). Application of the adm1 model to advanced anaerobic digestion. Bioresource Technology, 96(16), 1832–1842.

    CAS  PubMed  Google Scholar 

  41. Thangamani, A., Rajakumar, S., & Ramanujam, R.-A. (2010). Anaerobic co-digestion of hazardous tannery solid waste and primary sludge: biodegradation kinetics and metabolite analysis. Clean Technologies and Environmental Policy, 12(5), 517–524.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21878143), Chinese MOST 973 project (2013CB733501) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chang Liu or Kiros Hagos.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Y., Li, C., Liu, C. et al. Co-Digestion Biomethane Production and the Effect of Nanoparticle: Kinetics Modeling and Microcalorimetry Studies. Appl Biochem Biotechnol 193, 479–491 (2021). https://doi.org/10.1007/s12010-020-03436-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03436-1

Keywords

Navigation