Skip to main content

Advertisement

Log in

Multifarious Elicitors: Invoking Biosynthesis of Various Bioactive Secondary Metabolite in Fungi

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Natural products are considered to be the lifeline treatment for several diseases where their structural complexity makes them a source of potential lead molecules. As a producer of antibiotics, food colorants, enzymes, and nutritious food, fungi are beneficial to humans. Fungi, as a source of novel natural products, draw attention of scientists. However, redundant isolation of metabolite retards the rate of discovery. So, apart from the standard conditions for the production of secondary metabolites, certain induction strategies are used to trigger biosynthetic genes in fungi. Advancement in the computational tools helps in connecting gene clusters and their metabolite production. Therefore, modern analytical tools and the genomic era in hand leads to the identification of manifold of cryptic metabolites. The cryptic biosynthetic gene cluster (BGC) has become a treasure hunt for new metabolites representing biosynthetic pathways, regulatory mechanisms, and other factors. This review includes the use of chemical inducers/epigenetic modifiers and co-culture (species interaction) techniques to induce these BGCs. Furthermore, it cites a detailed representation of molecules isolated using these strategies. Since the induction occurs on the genomic molecular DNA and histones, this together brings a significant exploration of the biosynthetic pathways.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Newman, D. J., & Cragg, G. M. (2016). Natural products as sources of new drugs from 1981 to 2014. Journal of Natural Products, 79(3), 629–661. https://doi.org/10.1021/acs.jnatprod.5b01055.

  2. Mehmood, A., Liu, G., Wang, X., Meng, G., & Wang, C. (2019). Fungal quorum-sensing molecules and inhibitors with potential antifungal activity: a review. Molecules, 24(10), 1950.

  3. Chávez, R., Fierro, F., García-Rico, R. O., & Vaca, I. (2015). Filamentous fungi from extreme environments as a promising source of novel bioactive secondary metabolites. Frontiers in Microbiology, 6, 903.

  4. Von Bubnoff, A. (2006). Seeking new antibiotics in nature’s backyard. Cell, 127(5), 867–869.

  5. Walton, J. D. (2000). Horizontal gene transfer and the evolution of secondary metabolite gene clusters in fungi: an hypothesis. Fungal Genetics and Biology, 30(3), 167–171.

  6. Szewczyk, E., Chiang, Y., Oakley, C. E., Davidson, A. D., Wang, C. C. C., & Oakley, B. R. (2008). Identification and characterization of the asperthecin gene cluster of aspergillus nidulans. Applied and Environmental Microbiology, 74(24), 7607–7612.

  7. Shwab, E. K., Bok, J. W., Tribus, M., Galehr, J., Graessle, S., & Keller, N. P. (2007). Histone deacetylase activity regulates chemical diversity in aspergillus. Eukaryotic Cell, 6(9), 1656–1664. https://doi.org/10.1128/EC.00186-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Atanasova-Penichon, V., Legoahec, L., Bernillon, S., Deborde, C., Maucourt, M., Verdal-Bonnin, M.-N., … Richard-Forget, F. (2018). Mycotoxin biosynthesis and central metabolism are two interlinked pathways in Fusarium graminearum, as demonstrated by the extensive metabolic changes induced by caffeic acid exposure. Applied and Environmental Microbiology, 84(8), e01705–e01717. https://doi.org/10.1128/AEM.01705-17.

  9. Studt, L., Rosler, S. M., Burkhardt, I., Arndt, B., Freitag, M., Humpf, H., … Tudzynski, B. (2016). Knock-down of the methyltransferase Kmt6 relieves H3K27me3 and results in induction of cryptic and otherwise silent secondary metabolite gene clusters in Fusarium fujikuroi. Environmental Microbiology, 18(11), 4037–4054.

  10. Künzler, M. (2018). How fungi defend themselves against microbial competitors and animal predators. PLoS Pathogens, 14(9), e1007184.

  11. Williams, R. B., Henrikson, J. C., Hoover, A. R., Lee, A. E., & Cichewicz, R. H. (2008). Epigenetic remodeling of the fungal secondary metabolome. Organic & Biomolecular Chemistry, 6(11), 1895. https://doi.org/10.1039/b804701d.

  12. Mathur, S., & Hoskins, C. (2017). Drug development: lessons from nature. Review, 6(6), 612–614.

  13. Akone, S. H., Mandi, A., Kurtan, T., Hartmann, R., Lin, W., Daletos, G., & Proksch, P. (2016). Inducing secondary metabolite production by the endophytic fungus Chaetomium sp. through fungal–bacterial co-culture and epigenetic modification. Tetrahedron, 72(41), 6340–6347. https://doi.org/10.1016/j.tet.2016.08.022.

  14. Qadri, M., Nalli, Y., Jain, S. K., Chaubey, A., Ali, A., Strobel, G. A., Vishwakarma, R. A., & Riyaz-Ul-Hassan, S. (2017). An insight into the secondary metabolism of muscodor yucatanensis: small-molecule epigenetic modifiers induce expression of secondary metabolism-related genes and production of new metabolites in the endophyte. Microbial Ecology, 73(4), 954–965. https://doi.org/10.1007/s00248-016-0901-y.

    Article  CAS  PubMed  Google Scholar 

  15. Asai, T., Morita, S., Taniguchi, T., Monde, K., & Oshima, Y. (2016). Epigenetic stimulation of polyketide production in Chaetomium cancroideum by an NAD + -dependent HDAC inhibitor. Organic & Biomolecular Chemistry, 14(2), 646–651. https://doi.org/10.1039/C5OB01595B.

    Article  CAS  Google Scholar 

  16. Bertrand, S., Bohni, N., Schnee, S., Schumpp, O., Gindro, K., & Wolfender, J. (2014). Metabolite induction via microorganism co-culture: a potential way to enhance chemical diversity for drug discovery. Biotechnology Advances, 32(6), 1180–1204. https://doi.org/10.1016/j.biotechadv.2014.03.001.

    Article  CAS  PubMed  Google Scholar 

  17. Schroeckh, V., Scherlach, K., Nützmann, H. W., Shelest, E., Schmidt-heck, W., Schuemann, J., ... & Brakhage, A. A. (2009). Intimate bacterial – fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proceedings of the National Academy of Sciences, 106(34), 14558–14563.

  18. Henrikson, J. C., Hoover, A. R., Joyner, P. M., & Cichewicz, R. H. (2009). A chemical epigenetics approach for engineering the in situ biosynthesis of a cryptic natural product from Aspergillus niger. Organic and Biomolecular Chemistry, 7(3), 435–438.

  19. Sharma, V., Singamaneni, V., Sharma, N., Kumar, A., Arora, D., Kushwaha, M., … Gupta, P. (2018). Valproic acid induces three novel cytotoxic secondary metabolites in Diaporthe sp., an endophytic fungus from Datura inoxia Mill. Bioorganic & Medicinal Chemistry Letters, 28(12), 2217–2221. 

  20. Asai, T., Yamamoto, T., & Oshima, Y. (2011). Histone deacetylase inhibitor induced the production of three novel prenylated tryptophan analogs in the entomopathogenic fungus, Torrubiella luteorostrata. Tetrahedron Letters, 52(52), 7042–7045. https://doi.org/10.1016/j.tetlet.2011.10.020.

    Article  CAS  Google Scholar 

  21. Yang, X., Awakawa, T., Wakimoto, T., & Abe, I. (2013). Induced production of novel prenyldepside and coumarins in endophytic fungi Pestalotiopsis acaciae. Tetrahedron Letters, 54(43), 5814–5817. https://doi.org/10.1016/j.tetlet.2013.08.054.

    Article  CAS  Google Scholar 

  22. Christian, O. E., Compton, J., Christian, K. R., Mooberry, S. L., Valeriote, F. A., & Crews, P. (2005). Using Jasplakinolide to turn on pathways that enable the isolation of new chaetoglobosins from Phomospis asparagi. Journal of natural products, 68(11), 1592–1597.

  23. Vervoort, H. C., Drašković, M., & Crews, P. (2011). Histone deacetylase inhibitors as a tool to up-regulate new fungal biosynthetic products: isolation of EGM-556, a cyclodepsipeptide, from Microascus sp. Organic Letters, 13(3), 410–413.

  24. El-hawary, S. S., Sayed, A. M., Mohammed, R., Hassan, H. M., Zaki, M. A., Rateb, M. E., … Abdelmohsen, U. R. (2018). Epigenetic modifiers induce bioactive phenolic metabolites in the marine-derived fungus Penicillium brevicompactum. Marine drugs, 16(8), 253.

  25. Beau, J., Mahid, N., Burda, W. N., Harrington, L., Shaw, L. N., Mutka, T., … Baker, B. J. (2012). Epigenetic tailoring for the production of anti-infective cytosporones from the marine fungus Leucostoma persoonii. Marine Drugs, 10(4), 762–774.

  26. Chen, H. J., Awakawa, T., Sun, J. Y., Wakimoto, T., & Abe, I. (2013). Epigenetic modifier-induced biosynthesis of novel fusaric acid derivatives in endophytic fungi from Datura stramonium L. Natural Products and Bioprospecting, 3(1), 20–23.

  27. You, B. J., Tien, N., Lee, M. H., Bao, B. Y., Wu, Y. S., Hu, T. C., & Lee, H. Z. (2017). Induction of apoptosis and ganoderic acid biosynthesis by cAMP signaling in Ganoderma lucidum. Scientific Reports, 7(1), 1–13.

  28. Sun, J., Awakawa, T., Noguchi, H., & Abe, I. (2012). Bioorganic & medicinal chemistry letters induced production of mycotoxins in an endophytic fungus from the medicinal plant Datura stramonium L. Bioorganic & Medicinal Chemistry Letters, 22(20), 6397–6400. https://doi.org/10.1016/j.bmcl.2012.08.063.

    Article  CAS  Google Scholar 

  29. Yang, W. C., Bao, H. Y., Liu, Y. Y., Nie, Y. Y., Yang, J. M., Hong, P. Z., & Zhang, Y. (2018). Depsidone derivatives and a cyclopeptide produced by marine fungus Aspergillus unguis under chemical induction and by its plasma induced mutant. Molecules, 23(9), 2245.

  30. Schmidt, F. R., Davis, N. D., Diener, U. L., & Lemke, P. A. (1983). Cycloheximide induction of aflatoxin synthesis in a nontoxigenic strain of Aspergillus flavus. Biotechnology, 1(9), 794–795.

  31. Nützmann, H., Reyes-dominguez, Y., Scherlach, K., Schroeckh, V., & Horn, F., Gacek, A., ... & Brakhage, A. A. (2011). Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga / Ada-mediated histone acetylation. Proceedings of the National Academy of Sciences, 108(34), 14282–14287.

  32. Ola, A. R., Thomy, D., Lai, D., Brotz-Oesterhelt, H., & Proksch, P. (2013). Inducing secondary metabolite production by the endophytic fungus Fusarium tricinctum through coculture with Bacillus subtilis. Journal of natural products, 76(11), 2094–2099.

  33. Yu, L., Ding, W., & Ma, Z. (2016). Induced production of cytochalasans in co- culture of marine fungus Aspergillus flavipes and actinomycete Streptomyces sp. Natural Product Research, 30(15), 1718–1723.

  34. Abdel-Wahab, N. M., Scharf, S., Ozkaya, F. C., Kurtan, T., Mandi, A., & Fouad, M. A. (2019). Induction of secondary metabolites from the marine-derived fungus Aspergillus versicolor through co-cultivation with Bacillus subtilis. Planta Medica, 85, 503–512. https://doi.org/10.1055/a-0835-2332.

  35. Abdelwahab, M. F., Kurtan, T., Mandi, A., Muller, W. E. G., Fouad, M. A., Kamel, M. S., … Proksch, P. (2018). Induced secondary metabolites from the endophytic fungus Aspergillus versicolor through bacterial co-culture and OSMAC approaches. Tetrahedron Letters, 59(27), 2647–2652. https://doi.org/10.1016/j.tetlet.2018.05.067.

  36. Sonnenbichler, J., Dietrich, J., & Peipp, H. (1994). Investigations concerning the induction of the biosynthesis of toxic secondary metabolites in basidiomycetes. Biological Chemistry Hoppe-Seyler, 375, 71–79.

  37. Glauser, G., Gindro, K., Fringeli, J., De Joffrey, J. P., Rudaz, S., & Wolfender, J. L. (2009). Differential analysis of mycoalexins in confrontation zones of grapevine fungal pathogens by ultrahigh pressure liquid chromatography / time-of-flight mass spectrometry and capillary nuclear magnetic resonance. Journal of Agricultural and Food Chemistry, 57(4), 1127–1134.

  38. Muller, M. E. H., Steier, I., Koppen, R., Siegel, D., Proske, M., Korn, U., & Koch, M. (2012). Cocultivation of phytopathogenic Fusarium and Alternaria strains affects fungal growth and mycotoxin production. Journal of Applied Microbiology, 113(4), 874–887.

  39. Wang, J., Lin, W., Wray, V., Lai, D., & Proksch, P. (2013). Induced production of depsipeptides by co-culturing Fusarium tricinctum and Fusarium begoniae. Tetrahedron Letters, 54(20), 2492–2496. https://doi.org/10.1016/j.tetlet.2013.03.005.

    Article  CAS  Google Scholar 

  40. Bertrand, S., Schumpp, O., Bohni, N., Monod, M., Gindro, K., & Wolfender, J. (2013). De novo production of metabolites by fungal co-culture of Trichophyton rubrum and Bionectria ochroleuca. Journal of Natural Products, 76(6), 1157–1165.

  41. Minerdi, D., Bossi, S., Gullino, M. L., & Garibaldi, A. (2009). Volatile organic compounds: a potential direct long-distance mechanism for antagonistic action of Fusarium oxysporum strain MSA 35. Environmental Microbiology, 11(4), 844–854. https://doi.org/10.1111/j.1462-2920.2008.01805.x

  42. Park, H. B., Kwon, H. C., Lee, C., & Yang, H. O. (2009). Glionitrin A, an antibiotic - antitumor metabolite derived from competitive interaction between abandoned mine microbes. Journal of Natural Products, 72(2), 248–252.

  43. Zuck, K. M., Shipley, S., & Newman, D. J. (2011). Induced production of N-formyl alkaloids from Aspergillus fumigatus by co-culture with Streptomyces peucetius. Journal of Natural Products, 74(7), 1653–1657.

  44. Konig, C. C., Scherlach, K., Schroeckh, V., Horn, F., Nietzsche, S., Brakhage, A. A., & Hertweck, C. (2013). Bacterium induces cryptic meroterpenoid pathway in the pathogenic fungus Aspergillus fumigatus. Chembiochem, 14(8), 938–942. https://doi.org/10.1002/cbic.201300070

  45. Rateb, M. E., Hallyburton, I., Houssen, W. E., Bull, A. T., Goodfellow, M., Santhanam, R., ... & Ebel, R. (2013). Induction of diverse secondary metabolites in Aspergillus fumigatus by microbial co-culture. RSC Advances, 3(34), 14444–14450. https://doi.org/10.1039/c3ra42378f

  46. Liu, S., Dai, H., Heering, C., Janiak, C., Lin, W., Liu, Z., & Proksch, P. (2017). Inducing new secondary metabolites through co-cultivation of the fungus Pestalotiopsis sp. with the bacterium Bacillus subtilis. Tetrahedron Letters, 58(3), 257–261. https://doi.org/10.1016/j.tetlet.2016.12.026.

  47. Zhang, Z., He, X., Zhang, G., Che, Q., Zhu, T., Gu, Q., & Li, D. (2017). Inducing secondary metabolite production by combined culture of Talaromyces aculeatus and Penicillium variable. Journal of Natural Products, 80(12), 3167–3171.

  48. Chen, H., Daletos, G., Abdel-Aziz, M. S., Thomy, D., Dai, H., Brotz-Oesterhelt, H., ... & Proksch, P. (2015). Inducing secondary metabolite production by the soil-dwelling fungus Aspergillus terreus through bacterial co-culture. Phytochemistry Letters, 12, 35–41. https://doi.org/10.1016/j.phytol.2015.02.009

  49. Zhang, L., Niaz, S. I., Khan, D., Wang, Z., Zhu, Y., Zhou, H., ... & Liu, L. (2017). Induction of diverse bioactive secondary metabolites from the mangrove endophytic fungus Trichoderma sp.(strain 307) by co-cultivation with Acinetobacter johnsonii (strain B2). Marine drugs, 15(2), 35.

  50. Chagas, F. O., Dias, L. G., & Pupo, M. T. (2013). A mixed culture of endophytic fungi increases production of antifungal polyketides. Journal of Chemical Ecology, 39(10), 1335–1342.

  51. Giddings, L., & Newman, D. J. (2015). Bioactive compounds from extremophiles genomic studies, biosynthetic gene clusters, and new dereplication methods. Springer. https://doi.org/10.1007/978-3-319-14836-6.

  52. Chooi, Y. H., Muria-Gonzalez, M. J., Mead, O. L., & Solomon, P. S. (2015). SnPKS19 encodes the polyketide synthase for alternariol mycotoxin biosynthesis in the wheat pathogen Parastagonospora nodorum. Applied and Environmental Microbiology, 81(16), 5309–5317. https://doi.org/10.1128/AEM.00278-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schor, R., & Cox, R. (2018). Classic fungal natural products in the genomic age: the molecular legacy of Harold Raistrick. Natural Product Reports, 35(3), 230–256. https://doi.org/10.1039/c8np00021b.

    Article  CAS  PubMed  Google Scholar 

  54. Thissera, B., Alhadrami, H. A., Hassan, M. H. A., Hassan, H. M., Bawazeer, M., Yaseen, M., et al. (2020). Induction of cryptic antifungal pulicatin derivatives from Pantoea agglomerans by microbial co-culture. Biomolecules, 10(2). https://doi.org/10.3390/biom10020268.

  55. Murakami, S., Hayashi, N., Inomata, T., Kato, H., Hitora, Y., & Tsukamoto, S. (2020). Induction of secondary metabolite production by fungal co-culture of Talaromyces pinophilus and Paraphaeosphaeria sp. Journal of natural medicines, 74(3), 545–549. https://doi.org/10.1007/s11418-020-01400-1.

    Article  PubMed  Google Scholar 

Download references

Funding

Funding was received from NIPER Ahmedabad, under the aegis of the Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Government of India in terms of providing facilities and research fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijeet S. Kate.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 136 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bharatiya, P., Rathod, P., Hiray, A. et al. Multifarious Elicitors: Invoking Biosynthesis of Various Bioactive Secondary Metabolite in Fungi. Appl Biochem Biotechnol 193, 668–686 (2021). https://doi.org/10.1007/s12010-020-03423-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03423-6

Keywords

Navigation