Skip to main content
Log in

Esterification of Polymeric Carbohydrate Through Congener Cutinase-Like Biocatalyst

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Cutinase-like enzymes (CLEs) are bi-functional hydrolases, which share the conserved catalytic site of lipase and consensus pentapeptide sequence of cutinase. Here, we have genetically replaced the canonical amino acids (CAA) by their non-canonical fluorinated surrogates to biosynthesize a novel class of congener biocatalyst for esterification of polymeric carbohydrate with long-chain fatty acid. It is a new enzyme-engineering approach used to manipulate industrially relevant biocatalyst through genetic incorporation of new functionally encoded non-canonical amino acids (NCAA). Global fluorination of CLE improved its catalytic, functional, and structural stability. Molecular docking studies confirmed that the fluorinated CLE (FCLE) had developed a binding affinity towards different fatty acids compared with the parent CLE. Importantly, FCLE could catalyze starch oleate synthesis in 24 h with a degree of substitution of 0.3 ± 0.001. Biophysical and microscopic analysis substantiated the efficient synthesis of the ester by FCLE. Our data represent the first step in the generation of an industrially relevant fluorous multifunctional enzyme for facile synthesis of high fatty acid starch esters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1

Similar content being viewed by others

References

  1. Lu, X., Luo, Z., Yu, S., & Fu, X. (2012). Lipase-catalyzed synthesis of starch palmitate in mixed ionic liquids. Journal of Agricultural and Food Chemistry, 60(36), 9273–9279.

    Article  CAS  PubMed  Google Scholar 

  2. Mayilvahanan, A., Ramchary, A., Niraikulam, A., Marichetti Kuppuswami, G., & NumbiRamudu, K. (2019). A green process for starch oleate synthesis by Cryptococcus sp. MTCC 5455 lipase and its potential as an emulsifying agent. Starch, 71(1-2), 1700325.

    Article  CAS  Google Scholar 

  3. Tian, S., Chen, Y., Chen, Z., Yang, Y., & Wang, Y. (2018). Preparation and characteristics of starch esters and its effects on dough physicochemical properties. Journal of Food Quality, 7, 1395978.

    Google Scholar 

  4. Wang, Y., Xin, J., Shi, J., & Xia, C. (2013). Lipase-catalyzed esterification of corn-starch with oleic acid in solvent-free system. Biotechnology: An Indian Journal, 8(12), 1717–1725.

    CAS  Google Scholar 

  5. Ferrario, V., Pellis, A., Cespugli, M., Guebitz, G. M., & Gardossi, L. (2016). Nature inspired solutions for polymers: will cutinase enzymes make polyesters and polyamides greener? Catalysts, 6(12), 205.

    Article  CAS  Google Scholar 

  6. Acevedo-Rocha, C. G., Hoesl, M. G., Nehring, S., Royter, M., Wolschner, C., Wiltschi, B., Antranikian, G., & Budisa, N. (2013). Non-canonical amino acids as a useful synthetic biological tool for lipase-catalysed reactions in hostile environments. Catalysis Science & Technology, 3(5), 1198–1201.

    Article  CAS  Google Scholar 

  7. Zheng, C., Li, Z., Su, J., Zhang, R., Liu, C., & Zhao, M. (2012). Characterization and emulsifying property of a novel bioemulsifier by Aeribacillus pallidus YM-1. Journal of Applied Microbiology, 113(1), 44–51.

    Article  CAS  PubMed  Google Scholar 

  8. Voller, J. S., & Budisa, N. (2017). Coupling genetic code expansion and metabolic engineering for synthetic cells. Current Opinion in Biotechnology, 48, 1–7.

    Article  PubMed  CAS  Google Scholar 

  9. Pandurangan, S., Meganathan, I., Ragavan, S., Ramudu, K. N., Shanmugam, E., Shanmugam, G., & Niraikulam, A. (2019). Engineering of a skin-fiber-opening enzyme for sulfide-free leather beam house operation through xenobiology. Green Chemistry, 21(8), 2070–2081.

    Article  CAS  Google Scholar 

  10. Salwiczek, M., Nyakatura, E. K., Gerling, U. I., Ye, S., & Koksch, B. (2012). Fluorinated amino acids: compatibility with native protein structures and effects on protein–protein interactions. Chemical Society Reviews, 41(6), 2135–2171.

    Article  CAS  PubMed  Google Scholar 

  11. Biava, H., & Budisa, N. (2014). Evolution of fluorinated enzymes: an emerging trend for biocatalyst stabilization. Engineering in Life Sciences, 14(4), 340–351.

    Article  CAS  Google Scholar 

  12. Budisa, N., Wenger, W., & Wiltschi, B. (2010). Residue-specific global fluorination of Candida antarctica lipase B in Pichia pastoris. Molecular BioSystems, 6(9), 1630–1639.

    Article  CAS  PubMed  Google Scholar 

  13. Deepankumar, K., Shon, M., Nadarajan, S. P., Shin, G., Mathew, S., Ayyadurai, N., Kim, B. G., Choi, S. H., Lee, S. H., & Yun, H. (2014). Enhancing thermostability and organic solvent tolerance of ω-transaminase through global incorporation of fluorotyrosine. Advanced Synthesis & Catalysis, 356(5), 993–998.

    Article  CAS  Google Scholar 

  14. Aarthy, M., Saravanan, P., Ayyadurai, N., Gowthaman, M. K., & Kamini, N. R. (2016). A two step process for production of omega 3-polyunsaturated fatty acid concentrates from sardine oil using Cryptococcus sp. MTCC 5455 lipase. Journal of Molecular Catalysis B: Enzymatic, 125, 25–33.

    Article  CAS  Google Scholar 

  15. Drienovska, I., & Roelfes, G. (2020). Expanding the enzyme universe with genetically encoded unnatural amino acids. Nature Catalysis, 3(3), 193–202.

    Article  CAS  Google Scholar 

  16. Lin, X., Yu, A. C. S., & Chan, T. F. (2017). Efforts and challenges in engineering the genetic code. Life, 7(1), 12.

    Article  PubMed Central  CAS  Google Scholar 

  17. Ravikumar, Y., Nadarajan, S. P., Yoo, T. H., Lee, C. S., & Yun, H. (2015). Unnatural amino acid mutagenesis-based enzyme engineering. Trends in Biotechnology, 33(8), 462–470.

    Article  CAS  PubMed  Google Scholar 

  18. Sambrook, J., & Russell, D. (2001). Molecular cloning, a laboratory manual. Volume 3. Third Editionth edition.

  19. Zhang, Y., Gan, T., Hu, H., Huang, Z., Huang, A., Zhu, Y., Feng, Z., & Yang, M. (2014). A green technology for the preparation of high fatty acid starch esters: solid-phase synthesis of starch laurate assisted by mechanical activation with stirring ball mill as reactor. Industrial & Engineering Chemistry Research, 53(6), 2114–2120.

    Article  CAS  Google Scholar 

  20. Aarthy, M., Puhazhselvan, P., Aparna, R., George, A. S., Gowthaman, M. K., Ayyadurai, N., Masaki, K., Nakajima-Kambe, T., & Kamini, N. R. (2018). Growth associated degradation of aliphatic-aromatic copolyesters by Cryptococcus sp. MTCC 5455. Polymer Degradation and Stability, 152, 20–28.

    Article  CAS  Google Scholar 

  21. Kodama, Y., Masaki, K., Kondo, H., Suzuki, M., Tsuda, S., Nagura, T., Shimba, N., Suzuki, E. I., & Iefuji, H. (2009). Crystal structure and enhanced activity of a cutinase-like enzyme from Cryptococcus sp. strain S-2. Proteins: Structure, Function, and Bioinformatics, 77(3), 710–717.

    Article  CAS  Google Scholar 

  22. Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-aided Molecular Design, 27(3), 221–234.

    Article  PubMed  CAS  Google Scholar 

  23. Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. Journal of Medicinal Chemistry, 47(7), 1750–1759.

    Article  CAS  PubMed  Google Scholar 

  24. Shelley, J. C., Cholleti, A., Frye, L. L., Greenwood, J. R., Timlin, M. R., & Uchimaya, M. (2007). Epik: a software program for pK a prediction and protonation state generation for drug-like molecules. Journal of Computer-Aided Molecular Design, 21(12), 681–691.

    Article  CAS  PubMed  Google Scholar 

  25. Isobe, K., Akiba, T., & Yamaguchi, S. (1988). Crystallization and characterization of lipase from Penicillium cyclopium. Agricultural and Biological Chemistry, 52(1), 41–47.

    CAS  Google Scholar 

  26. Raghavan, S. S., Niraikulam, A., & Gunasekaran, K. (2019). Side chain torsion dictates planarity and ionizability of green fluorescent protein’s chromophore leading to spectral perturbations. Journal of Biomolecular Structure and Dynamics, 37(17), 4450–4459.

    Article  CAS  PubMed  Google Scholar 

  27. Singh, A., Upadhyay, V., Upadhyay, A. K., Singh, S. M., & Panda, A. K. (2015). Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process. Microbial Cell Factories, 14(1), 1–10.

    Article  CAS  Google Scholar 

  28. Cirino, P. C., Tang, Y., Takahashi, K., Tirrell, D. A., & Arnold, F. H. (2003). Global incorporation of norleucine in place of methionine in cytochrome P450 BM-3 heme domain increases peroxygenase activity. Biotechnology and Bioengineering, 83(6), 729–734.

    Article  CAS  PubMed  Google Scholar 

  29. Ring, M., Armitage, I. M., & Huber, R. E. (1985). m-Fluorotyrosine substitution in β-galactosidase; evidence for the existence of a catalytically active tyrosine. Biochemical and Biophysical Research Communications, 131(2), 675–680.

    Article  CAS  PubMed  Google Scholar 

  30. Ahmad, S., & Rao, N. M. (2009). Thermally denatured state determines refolding in lipase: mutational analysis. Protein Science, 18(6), 1183–1196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Han, F., Gao, C., Liu, M., Huang, F., & Zhang, B. (2013). Synthesis, optimization and characterization of acetylated corn starch with the high degree of substitution. International Journal of Biological Macromolecules, 59, 372–376.

    Article  CAS  PubMed  Google Scholar 

  32. Kshirsagar, A. C., & Singhal, R. S. (2007). Optimization of starch oleate derivatives from native corn and hydrolyzed corn starch by response surface methodology. Carbohydrate Polymers, 69(3), 455–461.

    Article  CAS  Google Scholar 

  33. Zarski, A., Ptak, S., Siemion, P., & Kapusniak, J. (2016). Esterification of potato starch by a biocatalysed reaction in an ionic liquid. Carbohydrate Polymers, 137, 657–663.

    Article  CAS  PubMed  Google Scholar 

  34. Wang, Y., Xin, J., Shi, J., Wu, W., & Xia, C. (2014). A kinetic study of starch palmitate synthesis by immobilized lipase-catalyzed esterification in solvent free system. Journal of Molecular Catalysis B: Enzymatic, 101, 73–79.

    Article  CAS  Google Scholar 

  35. Horchani, H., Chaâbouni, M., Gargouri, Y., & Sayari, A. (2010). Solvent-free lipase-catalyzed synthesis of long-chain starch esters using microwave heating: optimization by response surface methodology. Carbohydrate Polymers, 79(2), 466–474.

    Article  CAS  Google Scholar 

  36. Tupa, M. V., Arroyo, S., Herrera, M. L., & Foresti, M. L. (2018). Production of esterified starches with increased resistant starch content by an α-hydroxy acid-catalyzed route. Starch, 70(5-6), 1700155.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Director, CSIR-CLRI, for his support during the project. We also thank ICMR (File No: 5/3/8/4/2019-ITR) for research support.

Funding

We acknowledge the Council of Scientific and Industrial Research (CSIR), New Delhi, for the award of Senior Research Fellowship to Ms. Sisila V and the Indian Council of Medical Research (ICMR) for Research Associate to Dr. M. Aarthy. The authors are grateful to CSIR-CLRI for funding this research through the “Major Laboratory Project - Biotechnology division.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niraikulam Ayyadurai.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1899 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sisila, V., Puhazhselvan, P., Aarthy, M. et al. Esterification of Polymeric Carbohydrate Through Congener Cutinase-Like Biocatalyst. Appl Biochem Biotechnol 193, 19–32 (2021). https://doi.org/10.1007/s12010-020-03415-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03415-6

Keywords

Navigation