Skip to main content

Conservation of Xylose Fermentability in Phlebia Species and Direct Fermentation of Xylan by Selected Fungi


In efforts to lower the cost of total conversion of lignocellulosic materials, utilization of hemicellulose must be considered. White-rot fungus Phlebia sp. MG-60 can produce ethanol directly from cellulose and has fermentation ability for glucose, cellulose, and xylose. Therefore, white-rot fungi can be considered a good candidate for consolidated bioprocessing to give bioethanol from lignocellulosic biomass, although little information is available on the direct fermentation of xylan. In the present study, some Phlebia species were selected as candidates because of their ability to ferment xylose to ethanol more efficiently than Phlebia sp. MG-60. This process indicated that the basidiomycetes that can produce ethanol from xylose are closely related genetically within the Phlebia genus. The selected Phlebia species showed higher ethanol productivity from corn core and beechwood xylans than Phlebia sp. MG-60. The ethanol yields from corn core xylan in culture with Phlebia acerina HHB11146, Phlebia ludoviciana HHB9640, and Phlebia subochracea HHB8494 were 46.2%, 46.7%, and 39.7% of theoretical maximum, and those from beechwood xylan were 19.09%, 17.7%, and 21.4% of the theoretical maximum, respectively.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    IPCC. (2018). In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (p. 1535). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.

    Google Scholar 

  2. 2.

    IPCC. (2018). Global warming of 1.5°C. An IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock,M. Tignor, and T. Waterfield (eds.)]. In Press.

  3. 3.

    Watts, N., Amann, M., Arnell, N., Ayeb-Karlsson, S., et al. (2019). The 2019 report of The Lancet Countdown on health and climate change: ensuring that the health of a child born today is not defined by a changing climate. Lancet, 394(10211), 1836–1878.

    PubMed  Article  Google Scholar 

  4. 4.

    Panahi, H. K. S., Dehhaghi, M., Kinder, J. E., & Ezeji, T. C. (2019). A review on green liquid fuels for the transportation sector: a prospect of microbial solutions to climate change. Biofuel Research Journal, 6(3), 995–1024.

    CAS  Article  Google Scholar 

  5. 5.

    Cheah, W. Y., Sankaran, R., Show, P. L., Tg Ibrahim, T. N. B., Chew, K. W., Culaba, A., & Chang, J.-S. (2020). Pretreatment methods for lignocellulosic biofuels production: current advances, challenges and future prospects. Biofuel Research Journal, 25, 1115–1127.

    Article  Google Scholar 

  6. 6.

    Tri, C. L., Khuong, L. D., & Kamei, I. (2018). The improvement of sodium hydroxide pretreatment in bioethanol production from Japanese bamboo Phyllostachys edulis using the white rot fungus Phlebia sp. MG-60. International Biodeterioration and Biodegradation, 133, 86–92.

    CAS  Article  Google Scholar 

  7. 7.

    Kim, J. S., Lee, Y. Y., & Kim, T. H. (2016). A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresource Technology, 199, 42–48.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Khuong, L. D., Kondo, R., De Leon, R., Kim Anh, T., Shimizu, K., & Kamei, I. (2014). Bioethanol production from alkaline-pretreated sugarcane bagasse by consolidated bioprocessing using Phlebia sp. MG-60. International Biodeterioration & Biodegradation, 88, 62–68.

    CAS  Article  Google Scholar 

  9. 9.

    Asgher, M., Ahmad, Z., & Iqbal, H. N. N. (2013). Alkali and enzymatic delignification of sugarcane bagasse to expose cellulose polymers for saccharification and bio-ethanol production. Industrial Crops and Products, 44, 488–495.

    CAS  Article  Google Scholar 

  10. 10.

    Matsushika, A., Inoue, H., Kodaki, T., & Sawayama, S. (2009). Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Applied Microbiology and Biotechnology, 84(1), 37–53.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Ohta, K., Beall, D. S., Mejia, J. P., Shanmugam, K. T., & Ingram, L. O. (1991). Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Applied and Environmental Microbiology, 57(4), 893–900.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Richard, P., Verho, R., Putkonen, M., Londesborough, J., & Penttila, M. (2003). Production of ethanol from L -arabinose by Saccharomyces cerevisiae containing a fungal L -arabinose pathway. FEMS Yeast Research, 3(2), 185–189.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Millati, R., Edebo, L., & Taherzadeh, M. J. (2005). Performance of Rhizopus, Rhizomucor, and Mucor in ethanol production from glucose, xylose, and wood hydrolyzates. Enzyme and Microbial Technology, 36(2–3), 294–300.

    CAS  Article  Google Scholar 

  14. 14.

    Isroi, M., Millati, R., Syamsiah, S., Niklasson, C., Cahyanto, M. N., Lundquist, K., & Taherzadeh, M. J. (2011). Biological pretreatment of lignocelluloses with white-rot fungi and its applications: a review. BioResources, 6(4), 5224–5259.

    Google Scholar 

  15. 15.

    Mizuno, R., Ichinose, H., Honda, M., Takabatake, K., Sotome, I., Takai, T., Maehara, T., Okadome, H., Isobe, H., Gau, M., & Kaneko, S. (2009). Use of whole crop sorghums as a raw material in consolidated bioprocessing bioethanol production using Flammulina velutipes. Bioscience, Biotechnology, and Biochemistry, 73(7), 1671–1673.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Okamoto, K., Nitta, Y., Maekawa, N., & Yanase, H. (2011). Direct ethanol production from starch, wheat bran and rice straw by the white rot fungus Trametes hirsuta. Enzyme and Microbial Technology, 48(3), 273–277.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Okamoto, K., Imashiro, K., Akizawa, Y., Onimura, A., Yoneda, Y., Nitta, Y., Maekawa, N., & Yanase, H. (2010). Production of ethanol by the white-rot basidiomycetes Peniophora cinerea and Trametes suaveolens. Biotechnology Letters, 32(7), 909–913.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Horisawa, S., Ando, H., Ariga, O., & Sakuma, Y. (2015). Direct ethanol production from cellulosic materials by consolidated biological processing using the wood rot fungus Schizophyllum commune. Bioresource Technology, 197, 37–41.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Mattila, H., Kuuskeri, J., & Lundell, T. (2017). Single-step, single-organism bioethanol production and bioconversion of lignocellulose waste materials by phlebioid fungal species. Bioresource Technology, 225, 254–261.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Kamei, I., Hirota, Y., Mori, T., Hirai, H., Meguro, S., & Kondo, R. (2012). Direct ethanol production from cellulosic materials by the hypersaline-tolerant white-rot fungus Phlebia sp. MG-60. Bioresource Technology, 112, 137–142.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Kamei, I., Hirota, Y., & Meguro, S. (2012). Integrated delignification and simultaneous saccharification and fermentation of hard wood by a white-rot fungus, Phlebia sp. MG-60. Bioresource Technology, 126, 137–141.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Tsuyama, T., Yamaguchi, M., & Kamei, I. (2017). Accumulation of sugar from pulp and xylitol from xylose by pyruvate decarboxylase-negative white-rot fungus Phlebia sp. MG-60. Bioresource Technology, 238, 241–247.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Aita, G. A., Salvi, D. A., & Walker, M. S. (2011). Enzyme hydrolysis and ethanol fermentation of dilute ammonia pretreated energy cane. Bioresource Technology, 102(6), 4444–4448.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2008). Determination of structural carbohydrates and lignin in biomass. Technical Report, NREL/TP-510-42618.

  25. 25.

    Bailey, M. J., Biely, P., & Poutanen, K. (1992). Interlaboratory testing of methods for assay of xylanase activity. Journal of Biotechnology, 23(3), 257–270.

    CAS  Article  Google Scholar 

  26. 26.

    Kamei, I., Suhara, H., & Kondo, R. (2005). Phylogenetical approach to isolation of white-rot fungi capable of degrading polychlorinated dibenzo-p-dioxin. Applied Microbiology and Biotechnology, 69(3), 358–366.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Jeffries, T. W. (2006). Engineering yeasts for xylose metabolism. Current Opinion in Biotechnology, 17(3), 320–326.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Jang, J. S., Cho, Y. K., Jeong, G. T., & Kim, S. K. (2012). Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed, Saccharina japonica. Bioprocess and Biosystems Engineering, 35(1–2), 11–18.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Xin, F., Dong, W., Zhang, W., Ma, J., & Jiang, M. (2019). Biobutanol production from crystalline cellulose through consolidated bioprocessing. Trends in Biotechnology, 37(2), 167–180.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Naran, R., Black, S., Decker, S. R., & Azadi, P. (2009). Extraction and characterization of native heteroxylans from delignified corn stover and aspen. Cellulose, 16(4), 661–675.

    CAS  Article  Google Scholar 

  31. 31.

    Kumar, A. K., & Sharma, S. (2017). Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresources and Bioprocessing, 4(1), 7.

    PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Balan, V., Bals, B., Chundawat, S. P., Marshall, D., & Dale, B. E. (2009). Lignocellulosic biomass pretreatment using AFEX. In J. Mielenz (Ed.), Biofuels. Methods in Molecular Biology (Methods and Protocols) (Vol. 581, pp. 61–77). Totowa: Humana Press.

    Google Scholar 

  33. 33.

    Gunawan, C., Xue, S., Pattathil, S., Da Costa Sousa, L., Dale, B. E., & Balan, V. (2017). Comprehensive characterization of non-cellulosic recalcitrant cell wall carbohydrates in unhydrolyzed solids from AFEX-pretreated corn stover. Biotechnology for Biofuels, 10(1), 82.

    PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Tri, C. L., & Kamei, I. (2020). Butanol production from cellulosic material by anaerobic co-culture of white-rot fungus Phlebia and bacterium Clostridium in consolidated bioprocessing. Bioresource Technology, 305, 123065.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Motoda, T., Yamaguchi, M., Tsuyama, T., & Kamei, I. (2019). Down-regulation of pyruvate decarboxylase gene of white-rot fungus Phlebia sp. MG-60 modify the metabolism of sugars and productivity of extracellular peroxidase activity. Journal of Bioscience and Bioengineering, 127(1), 66–72.

    CAS  PubMed  Article  Google Scholar 

Download references


We thank Austin Schultz, PhD, from Edanz Group, ( for editing a draft of this manuscript.


This work was supported by the Science and Technology Research Promotion Program for Agriculture, Forestry, Fisheries, and Food Industry (27006A) from the Ministry of Agriculture, Forestry, and Fisheries of Japan. This work was also supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (grant no. 18H02257 and 17K19296).

Author information



Corresponding author

Correspondence to Ichiro Kamei.

Ethics declarations

All authors have read and approved the final manuscript.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kamei, I., Uchida, K. & Ardianti, V. Conservation of Xylose Fermentability in Phlebia Species and Direct Fermentation of Xylan by Selected Fungi. Appl Biochem Biotechnol 192, 895–909 (2020).

Download citation


  • Xylose fermentation
  • Xylan fermentation
  • Basidiomycetes
  • Phlebia genus
  • Bioethanol