Skip to main content

Advertisement

Log in

Selective Enrichment of Clostridium Spp. by Nutrition Control from Sihe Coal Geological Microbial Communities

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In the coal biogasification, butyric acid is an important intermediate product. The enrichment of butyric acid-producing bacteria in coal geological methanogens is critical to confirm this assertion. Therefore, to study a method for enrichment of butyric acid-producing bacteria and to explore characteristic factors for evaluating the enrichment effect would be the basis for further strain isolation and metabolomics research. In this study, the nutrition control method was used for the butyric acid-producing bacteria enrichment from concentrated bacteria solution in Sihe coal seam. The characteristic factors’ changes in gas production, gas composition, butyric acid concentration, and pH were observed and analyzed in the experiment. High-throughput sequencing was used as a verification method to validate the medium and genera enrichment effect that can be used for the butyric acid-producing bacteria. Through experimental research and analysis, it was identified that the glucose-sucrose-maltose medium was the beneficial medium to the enrichment of butyric acid-producing bacteria, and the high-throughput sequencing determined that the enriched genera were Clostridium spp. Glucose-sucrose-maltose medium experimental data confirmed that the decrease of CO2 and H2 daily yield, the increase of butyric acid concentration, and the decrease of pH value had a significant positive correlation with the enrichment of Clostridium spp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Li, H., Lau, H. C., & Huang, S. (2018). China’s coalbed methane development: a review of the challenges and opportunities in subsurface and surface engineering. Journal of Petroleum Science and Engineering, 166, 621–635. https://doi.org/10.1016/j.petrol.2018.03.047.

    Article  CAS  Google Scholar 

  2. Park, S. Y., & Liang, Y. (2016). Biogenic methane production from coal: a review on recent research and development on microbially enhanced coalbed methane (MECBM). Fuel., 166, 258–267. https://doi.org/10.1016/j.fuel.2015.10.121.

    Article  CAS  Google Scholar 

  3. Moore, T. A. (2012). Coalbed methane: a review. International Journal of Coal Geology, 101, 36–81. https://doi.org/10.1016/j.coal.2012.05.011.

    Article  CAS  Google Scholar 

  4. He, H., Han, Y. X., Jin, D. C., Leng, Y. W., Sun, Q., Shen, L. Y., & Tao, X. X. (2016). Microbial consortium in a non-production biogas coal mine of eastern China and its methane generation from lignite. Energy Sources, Part A: Recovery, Utilization and Environmental Effects., 38(10), 1377–1384. https://doi.org/10.1080/15567036.2014.927541.

    Article  CAS  Google Scholar 

  5. Xiao, D., Peng, S. P., Wang, B. Y., & Yan, X. X. (2013). Anthracite bio-degradation by methanogenic consortia in Qinshui basin. International Journal of Coal Geology, 116–117, 46–52. https://doi.org/10.1016/j.coal.2013.06.008.

    Article  CAS  Google Scholar 

  6. McIntosh, J., Martini, A., Petsch, S., Huang, R., & Nüsslein, K. (2008). Biogeochemistry of the Forest City Basin coalbed methane play. International Journal of Coal Geology, 76(1-2), 111–118. https://doi.org/10.1016/j.coal.2008.03.004.

    Article  CAS  Google Scholar 

  7. Beckmann, S., Luk, A. W. S., Gutierrez-Zamora, M. L., Chong, N. H. H., Thomas, T., Lee, M., & Manefield, M. (2018). Long-term succession in a coal seam microbiome during in situ biostimulation of coalbed-methane generation. The ISME Journal, 13(3), 632–650. https://doi.org/10.1038/s41396-018-0296-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bellou, S., Baeshen, M. N., Elazzazy, A. M., Aggeli, D., Sayegh, F., & Aggelis, G. (2014). Microalgal lipids biochemistry and biotechnological perspectives. Biotechnology Advances, 32(8), 1476–1493. https://doi.org/10.1016/j.biotechadv.2014.10.003.

    Article  CAS  PubMed  Google Scholar 

  9. Chen, T., Zheng, H., Hamilton, S., Rodrigues, S., Golding, S. D., & Rudolph, V. (2017). Characterisation of bioavailability of Surat Basin Walloon coals for biogenic methane production using environmental microbial consortia. International Journal of Coal Geology, 179, 92–112. https://doi.org/10.1016/j.coal.2017.05.017.

    Article  CAS  Google Scholar 

  10. Jabłoński, S., Rodowicz, P., & Łukaszewicz, M. (2015). Methanogenic archaea database containing physiological and biochemical characteristics. International Journal of Systematic and Evolutionary Microbiology, 65(Pt_4), 1360–1368. https://doi.org/10.1099/ijs.0.000065.

    Article  CAS  PubMed  Google Scholar 

  11. Suo, Y., Fu, H., Ren, M., Liao, Z., Ma, Y., & Wang, J. (2018). Enhanced butyric acid production in Clostridium tyrobutyricum by overexpression of rate-limiting enzymes in the Embden-Meyerhof-Parnas pathway. Journal of Biotechnology, 272-273, 14–21. https://doi.org/10.1016/j.jbiotec.2018.02.012.

    Article  CAS  PubMed  Google Scholar 

  12. Yutin, N., & Galperin, M. Y. (2013). A genomic update on clostridial phylogeny: gram-negative spore formers and other misplaced clostridia. Environmental Microbiology. https://doi.org/10.1111/1462-2920.12173.

  13. Chamkha, M., Labat, M., Patel, B. K. C., & Garcia, J. L. (2001). Isolation of a cinnamic acid-metabolizing Clostridium glycolicum strain from oil mill wastewaters and emendation of the species description. International Journal of Systematic and Evolutionary Microbiology, 51(6), 2049–2054. https://doi.org/10.1099/00207713-51-6-2049.

    Article  CAS  PubMed  Google Scholar 

  14. Louis, P., & Flint, H. J. (2009). Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiology Letters, 294(1), 1–8. https://doi.org/10.1111/j.1574-6968.2009.01514.x.

    Article  CAS  PubMed  Google Scholar 

  15. Wolska, K. I. (2004). Polish journal of microbiology. The Polish Journal of Microbiology.

  16. Cibis, K. G., Gneipel, A., & König, H. (2016). Isolation of acetic, propionic and butyric acid-forming bacteria from biogas plants. Journal of Biotechnology, 220, 51–63. https://doi.org/10.1016/j.jbiotec.2016.01.008.

    Article  CAS  PubMed  Google Scholar 

  17. Kuglarz, M., & Grübel, K. (2018). Integrated production of biofuels and succinic acid from biomass after thermochemical pretreatments. Ecological Chemistry and Engineering S, 25(4), 521–536. https://doi.org/10.1515/eces-2018-0034.

    Article  CAS  Google Scholar 

  18. LB (Luria-Bertani) liquid medium. (2006). Cold Spring Harbor Protocols. https://doi.org/10.1101/pdb.rec8141.

  19. Papoutsakis, E. T. (2000). Equations and calculations for fermentations of butyric acid bacteria. Biotechnology and Bioengineering, 67(6), 813–826. https://doi.org/10.1002/(SICI)1097-0290(20000320)67:6<813::AID-BIT17>3.0.CO;2-X.

    Article  CAS  PubMed  Google Scholar 

  20. Van Immerseel, F., Ducatelle, R., De Vos, M., Boon, N., Van De Wiele, T., Verbeke, K., et al. (2010). Butyric acid-producing anaerobic bacteria as a novel probiotic treatment approach for inflammatory bowel disease. Journal of Medical Microbiology, 59(2), 141–143. https://doi.org/10.1099/jmm.0.017541-0.

    Article  PubMed  Google Scholar 

  21. Van den Driessche, F., Rigole, P., Brackman, G., & Coenye, T. (2014). Optimization of resazurin-based viability staining for quantification of microbial biofilms. Journal of Microbiological Methods, 98, 31–34. https://doi.org/10.1016/j.mimet.2013.12.011.

    Article  CAS  PubMed  Google Scholar 

  22. Guo, H., Yuan, L., & Wang, J. (2015). An integrated approach to study of strata behavior and gas flow dynamics and its application. International Journal of Coal Science & Technology, 2(1), 12–21.

    Article  CAS  Google Scholar 

  23. Green, M. S., Flanegan, K. C., & Gilcrease, P. C. (2008). Characterization of a methanogenic consortium enriched from a coalbed methane well in the Powder River Basin, USA. International Journal of Coal Geology. https://doi.org/10.1016/j.coal.2008.05.001.

  24. Schloss, P. D., Jenior, M. L., Koumpouras, C. C., Westcott, S. L., & Highlander, S. K. (2016). Sequencing 16S rRNA gene fragments using the PacBio SMRT DNA sequencing system. PeerJ., 4, e1869. https://doi.org/10.7717/peerj.1869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xie, X. T., Kropinski, A. M., Tapscott, B., Weese, J. S., & Turner, P. V. (2018). Prevalence of fecal viruses and bacteriophage in Canadian farmed mink (Neovison vison). MicrobiologyOpen, 8(1). https://doi.org/10.1002/mbo3.622.

  26. Allali, I., Arnold, J. W., Roach, J., Cadenas, M. B., Butz, N., Hassan, H. M., Koci, M., Ballou, A., Mendoza, M., Ali, R., & Azcarate-Peril, M. A. (2017). A comparison of sequencing platforms and bioinformatics pipelines for compositional analysis of the gut microbiome. BMC Microbiology, 17(1), 194. https://doi.org/10.1186/s12866-017-1101-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fosso, B., Santamaria, M., Marzano, M., Alonso-Alemany, D., Valiente, G., Donvito, G., Monaco, A., Notarangelo, P., & Pesole, G. (2015). BioMaS: a modular pipeline for Bioinformatic analysis of Metagenomic AmpliconS. BMC Bioinformatics, 16(1), 203. https://doi.org/10.1186/s12859-015-0595-z.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Neves, A. L. A., Li, F., Ghoshal, B., McAllister, T., & Guan, L. L. (2017). Enhancing the resolution of rumen microbial classification from metatranscriptomic data using Kraken and Mothur. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.02445.

  29. Wang, Q., Garrity, G. M., Tiedje, J. M., & Cole, J. R. (2007). Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73(16), 5261–5267. https://doi.org/10.1128/AEM.00062-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Maddox, I. S., Steiner, E., Hirsch, S., Wessner, S., Gutierrez, N. A., Gapes, J. R., & Schuster, K. C. (2000). The cause of “acid-crash” and “acidogenic fermentations” during the batch acetone-butanol-ethanol (ABE-) fermentation process. Journal of Molecular Microbiology and Biotechnology.

  31. Schleifer, K.-H. (2009). Phylum XIII. Firmicutes Gibbons and Murray 1978 , 5 (Firmacutes [sic] Gibbons and Murray 1978, 5). In Systematic Bacteriology. https://doi.org/10.1007/978-0-387-68489-5_3.

  32. Wiegel, J., Tanner, R., & Rainey, F. A. (2006). An introduction to the family Clostridiaceae. In The Prokaryotes. https://doi.org/10.1007/0-387-30744-3_20.

  33. Suo, Y., Fu, H., Ren, M., Yang, X., Liao, Z., & Wang, J. (2018). Butyric acid production from lignocellulosic biomass hydrolysates by engineered Clostridium tyrobutyricum overexpressing class I heat shock protein GroESL. Bioresource Technology, 250, 691–698. https://doi.org/10.1016/j.biortech.2017.11.059.

    Article  CAS  PubMed  Google Scholar 

  34. Fu, H., Yu, L., Lin, M., Wang, J., Xiu, Z., & Yang, S. T. (2017). Metabolic engineering of Clostridium tyrobutyricum for enhanced butyric acid production from glucose and xylose. Metabolic Engineering, 40, 50–58. https://doi.org/10.1016/j.ymben.2016.12.014.

    Article  CAS  PubMed  Google Scholar 

  35. Zigová, J., Šturdík, E., Vandák, D., & Schlosser, Š. (1999). Butyric acid production by Clostridium butyricum with integrated extraction and pertraction. Process Biochemistry, 34(8), 835–843. https://doi.org/10.1016/S0032-9592(99)00007-2.

    Article  Google Scholar 

  36. Levantesi, C., Rossetti, S., Beimfohr, C., Thelen, K., Krooneman, J., van der Waarde, J., & Tandoi, V. (2006). Description of filamentous bacteria present in industrial activated sludge WWTPs by conventional and molecular methods. Water Science and Technology, 54(1), 129–137. https://doi.org/10.2166/wst.2006.380.

    Article  CAS  PubMed  Google Scholar 

  37. Deng, Y., Guo, X., Wang, Y., He, M., Ma, K., Wang, H., et al. (2015). Terrisporobacter petrolearius sp. Nov., isolated from an oilfield petroleum reservoir. International Journal of Systematic and Evolutionary Microbiology. https://doi.org/10.1099/ijsem.0.000450.

  38. Liang, Y. (2015). Theory and practice of integrated coal production and gas extraction. International Journal of Coal Science & Technology, 2(1), 3–11.

    Article  Google Scholar 

  39. Parks, D. H., Chuvochina, M., Waite, D. W., Rinke, C., Skarshewski, A., Chaumeil, P.-A., & Hugenholtz, P. (2018). A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nature Biotechnology, 36(10), 996–1004. https://doi.org/10.1038/nbt.4229.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the contributions of the following companies for allowing access to coal samples and other information used in this paper: Sihe mining, J&D Technology Company.

Funding

This work was supported by the Independent Research Project of State Key Laboratory of Coal Resources and Safe Mining, CUMT (grant number SKLCRSM19X0012: DX), the Open Research Project of State Key Laboratory of Coal Resources and Safe Mining (grant number SKLCRSM17KFA08: DX), the Fundamental Key Projects of Shanxi Provincial Key Research and Development Program (grant number 201703D211003: YZ), and the Fundamental Research Funds for Central Universities (grant number 2014QNB41: DX).

Author information

Authors and Affiliations

Authors

Contributions

Data curation, Xuefang Yuan and Martial Le Prince Essengue Samboukel; funding acquisition, Yidong Zhang and Enyuan Wang; methodology, Hailun He; project administration, Dong Xiao; Writing—original draft—Dong Xiao; Writing—review and editing, Meng Wang.

Corresponding authors

Correspondence to Dong Xiao or Hailun He.

Ethics declarations

Competing Interest

The authors declare that they have no competing interest.

Additional information

Originality-Significance Statement

I would like to declare on behalf of my co-authors that the work described was an original research that has not been published previously, and not under consideration for publication elsewhere, in whole or in part.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, D., Yuan, X., Wang, M. et al. Selective Enrichment of Clostridium Spp. by Nutrition Control from Sihe Coal Geological Microbial Communities. Appl Biochem Biotechnol 192, 952–964 (2020). https://doi.org/10.1007/s12010-020-03367-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03367-x

Keywords