Skip to main content

Advertisement

Log in

Improved Performance of Microbial Fuel Cell by In Situ Methanogenesis Suppression While Treating Fish Market Wastewater

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The fish market wastewater, which is rich in ammonium concentration, was investigated to explore its ability of in situ suppression of methanogenesis in the anodic chamber of microbial fuel cell (MFC) while treating it and to ensure non-reoccurrence of methanogenic consortia in the anodic chamber during its long-term operations. A lower specific methanogenic activity (0.097g chemical oxygen demand (COD)CH4/g volatile suspended solids (VSS). day) with a higher power density (3.81 ± 0.19 W/m3) was exhibited by the MFC operated with raw fish market wastewater as compared to the MFC fed with synthetic wastewater (0.219g CODCH4/g VSS. day and 1.75 ± 0.09 W/m3, respectively). The enhanced electrochemical activity of anodic biofilm of MFC fed with raw fish market wastewater than the MFC fed with synthetic wastewater further advocated the enhanced electrogenic activity and suppression of methanogenesis, because of the presence of higher ammonium content in the feed. This, in response, reduced the internal resistance (55 Ω), enhanced the coulombic efficiency (21.9 ± 0.3%) and normalized the energy recovery (0.27 kWh/m3) from the MFC fed with fish market wastewater than the MFC fed with synthetic wastewater (92 Ω, 15.7 ± 0.3% and 0.13 kWh/m3, respectively). Thus, while treating the fish market wastewater in the anodic chamber of MFC, any costly and repetitive treatment procedures for anodic microorganisms are not required for suppression of methanogens to ensure higher activity of electrogenic bacteria for higher electricity harvesting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. FAO. (2016). The state of world fisheries and aquaculture. Contributing to food security and nutrition for all. Rome. 220 pp. 978–92–5-306675-9.

  2. Chowdhury, P., Viraraghavan, T., & Srinivasan, A. (2010). Biological treatment processes for fish processing wastewater-a review. Bioresource Technology, 101(2), 439–449. https://doi.org/10.1016/j.biortech.2009.08.065.

    Article  CAS  PubMed  Google Scholar 

  3. Bhowmick, G. D., Chakraborty, I., Ghangrekar, M. M., & Mitra, A. (2019). TiO2/activated carbon photo cathode catalyst exposed to ultraviolet radiation to enhance the efficacy of integrated microbial fuel cell-membrane bioreactor. Bioresource Technology Reports, 7, 100303. https://doi.org/10.1016/j.biteb.2019.100303.

    Article  Google Scholar 

  4. Balslev-Olesen, P., Lynggaard-Jensen, A., & Nickelsen, C. (1990). Pilot-scale experiments on anaerobic treatment of wastewater from a fish processing plant. In Water Science and Technology, 22(1–2): 463–474. https://doi.org/10.2166/wst.1990.0170.

  5. Bhowmick, G. D., Das, S., Ghangrekar, M. M., Mitra, A., & Banerjee, R. (2019). Improved wastewater treatment by combined system of microbial fuel cell with activated carbon/TiO2 cathode catalyst and membrane bioreactor. Journal of The Institution of Engineers (India): Series A. https://doi.org/10.1007/s40030-019-00406-7.

  6. Logan, B. E. (2008). Microbial fuel cells. Fuel Cells, 39. https://doi.org/10.1016/B978-0-444-53199-5.00098-1.

  7. Bhowmick, G. D., Kibena-Põldsepp, E., Matisen, L., Merisalu, M., Kook, M., Kaärik, M., et al. (2019). Multi-walled carbon nanotube and carbide-derived carbon supported metal phthalocyanines as cathode catalysts for microbial fuel cell applications. Sustainable Energy and Fuels, 3(12), 3525–3537. https://doi.org/10.1039/c9se00574a.

    Article  CAS  Google Scholar 

  8. Jadhav, D. A., Ghosh Ray, S., & Ghangrekar, M. M. (2017). Third generation in bio-electrochemical system research–a systematic review on mechanisms for recovery of valuable by-products from wastewater. Renewable and Sustainable Energy Reviews, 76, 1022–1031. https://doi.org/10.1016/j.rser.2017.03.096.

    Article  CAS  Google Scholar 

  9. Das, I., Noori, M. T., Bhowmick, G. D., & Ghangrekar, M. M. (2018). Application of low-cost transition metal based Co0.5Zn0.5Fe2O4as oxygen reduction reaction catalyst for improving performance of microbial fuel cell. In MRS Advances (Vol. 3, pp. 3149–3154). Materials Research Society. https://doi.org/10.1557/adv.2018.450.

  10. Bhowmick, G. D., Noori, M. T., Das, I., Neethu, B., Ghangrekar, M. M., & Mitra, A. (2018). Bismuth doped TiO2 as an excellent photocathode catalyst to enhance the performance of microbial fuel cell. International Journal of Hydrogen Energy, 43(15), 7501–7510. https://doi.org/10.1016/j.ijhydene.2018.02.188.

    Article  CAS  Google Scholar 

  11. Neethu, B., Bhowmick, G. D., & Ghangrekar, M. M. (2019). A novel proton exchange membrane developed from clay and activated carbon derived from coconut shell for application in microbial fuel cell. Biochemical Engineering Journal, 148, 170–177. https://doi.org/10.1016/j.bej.2019.05.011.

    Article  CAS  Google Scholar 

  12. Saratale, G. D., Saratale, R. G., Shahid, M. K., Zhen, G., Kumar, G., Shin, H.-S., Choi, Y. G., & Kim, S.-H. (2017). A comprehensive overview on electro-active biofilms, role of exo-electrogens and their microbial niches in microbial fuel cells (MFCs). Chemosphere, 178, 534–547. https://doi.org/10.1016/j.chemosphere.2017.03.066.

    Article  CAS  PubMed  Google Scholar 

  13. Jadhav, D. A., Chendake, A. D., Schievano, A., & Pant, D. (2019). Suppressing methanogens and enriching electrogens in bioelectrochemical systems. Bioresource Technology, 277, 148–156. https://doi.org/10.1016/j.biortech.2018.12.098.

    Article  CAS  PubMed  Google Scholar 

  14. Chae, K. J., Choi, M. J., Kim, K. Y., Ajayi, F. F., Park, W., Kim, C. W., & Kim, I. S. (2010). Methanogenesis control by employing various environmental stress conditions in two-chambered microbial fuel cells. Bioresource Technology, 101(14), 5350–5357. https://doi.org/10.1016/j.biortech.2010.02.035.

    Article  CAS  PubMed  Google Scholar 

  15. Vamshi Krishna, K., & Venkata Mohan, S. (2015). Selective enrichment of electrogenic bacteria for fuel cell application: enumerating microbial dynamics using MiSeq platform. Bioresource Technology, 213, 146–154. https://doi.org/10.1016/j.biortech.2016.03.117.

    Article  CAS  Google Scholar 

  16. Xiao, X., Cheng, Y., Wang, Q., & Chen, Z. (2017). Effects of Fe nanoparticles on microbial fuel cells in startup process. Chinese Journal of Environmental Engineering. https://doi.org/10.12030/j.cjee.201612193.

  17. Rago, L., Guerrero, J., Baeza, J. A., & Guisasola, A. (2015). 2-Bromoethanesulfonate degradation in bioelectrochemical systems. Bioelectrochemistry, 105, 44–49. https://doi.org/10.1016/j.bioelechem.2015.05.001.

    Article  CAS  PubMed  Google Scholar 

  18. Ray, G., Noori, M. T., & Ghangrekar, M. M. (2017). Novel application of peptaibiotics derived from Trichoderma sp. for methanogenic suppression and enhanced power generation in microbial fuel cells. RSC Advances. https://doi.org/10.1039/c6ra27763b.

  19. Ueno, Y., & Kitajima, Y. (2014). Suppression of methane gas emissions and analysis of the electrode microbial community in a sediment-based bio-electrochemical system. Advances in Microbiology, 04(05), 252–266. https://doi.org/10.4236/aim.2014.45032.

    Article  CAS  Google Scholar 

  20. Kim, H. W., Nam, J. Y., & Shin, H. S. (2011). Ammonia inhibition and microbial adaptation in continuous single-chamber microbial fuel cells. Journal of Power Sources, 196(15), 6210–6213. https://doi.org/10.1016/j.jpowsour.2011.03.061.

    Article  CAS  Google Scholar 

  21. Rismani-Yazdi, H., Carver, S. M., Christy, A. D., Yu, Z., Bibby, K., Peccia, J., & Tuovinen, O. H. (2013). Suppression of methanogenesis in cellulose-fed microbial fuel cells in relation to performance, metabolite formation, and microbial population. Bioresource Technology, 129, 281–288. https://doi.org/10.1016/j.biortech.2012.10.137.

    Article  CAS  PubMed  Google Scholar 

  22. Soto, M., Méndez, R., & Lema, J. M. (1993). Sodium inhibition and sulphate reduction in the anaerobic treatment of mussel processing wastewaters. Journal of Chemical Technology & Biotechnology, 58(1), 1–7. https://doi.org/10.1002/jctb.280580102.

    Article  CAS  Google Scholar 

  23. Omil, F., Méndez, R., & Lema, J. M. (1995). Anaerobic treatment of saline wastewaters under high sulphide and ammonia content. Bioresource Technology, 54(3), 269–278. https://doi.org/10.1016/0960-8524(95)00143-3.

    Article  CAS  Google Scholar 

  24. Aspé, E., Martí, M. C., Jara, A., & Roeckel, M. (2001). Ammonia inhibition in the anaerobic treatment of fishery effluents. Water Environment Research, 73(2), 154–164. https://doi.org/10.2175/106143001x138813.

    Article  PubMed  Google Scholar 

  25. Soto, M., Méndez, R., & Lema, J. M. (1991). Biodegradability and toxicity in the anaerobic treatment of fish canning wastewaters. Environmental Technology (United Kingdom), 12(8), 669–677. https://doi.org/10.1080/09593339109385055.

    Article  CAS  Google Scholar 

  26. Zeeman, G., Sanders, W. T. M., Wang, K. Y., & Lettinga, G. (1997). Anaerobic treatment of complex wastewater and waste activated sludge-application of an upflow anaerobic solid removal (UASR) reactor for the removal and pre-hydrolysis of suspended COD. In Water Science and Technology, 35(10). https://doi.org/10.1016/S0273-1223(97)00210-2.

  27. Mendez, R., Lema, J. M., & Soto, M. (1995). Treatment of seafood-processing wastewaters in mesophilic and thermophilic anaerobic filters. Water Environment Research, 67(1), 33–45. https://doi.org/10.2175/106143095x131178.

    Article  CAS  Google Scholar 

  28. Aspé, E., Jara, M. A., & Roeckel, M. (1997). Ammonia inhibition in the anaerobic treatment of fishery effluents. Water Environment Research : a Research Publication of the Water Environment Federation, 73(2), 154–164. https://doi.org/10.2175/106143001X138813.

    Article  Google Scholar 

  29. de Baere, L. A., Devocht, M., Van Assche, P., & Verstraete, W. (1984). Influence of high NaCl and NH4Cl salt levels on methanogenic associations. Water Research, 18(5), 543–548. https://doi.org/10.1016/0043-1354(84)90201-X.

    Article  Google Scholar 

  30. Buendía, I. M., Fernández, F. J., Villaseñor, J., & Rodríguez, L. (2009). Feasibility of anaerobic co-digestion as a treatment option of meat industry wastes. Bioresource Technology, 100(6), 1903–1909. https://doi.org/10.1016/j.biortech.2008.10.013.

    Article  CAS  PubMed  Google Scholar 

  31. Pawłowski, A., Dudzińska, M. R., & Pawłowski, Ł. (2013). Environmental engineering IV : proceedings of the Conference on Environmental Engineering IV, Lublin, Poland, 3–5 September 2012. Environmental Engineering Iv.

  32. Kang, H., Kim, E., & Jung, S. P. (2017). Influence of flowrates to a reverse electro-dialysis (RED) stack on performance and electrochemistry of a microbial reverse electrodialysis cell (MRC). International Journal of Hydrogen Energy, 42(45), 27685–27692. https://doi.org/10.1016/j.ijhydene.2017.06.187.

    Article  CAS  Google Scholar 

  33. Mohamed, H. O., Obaid, M., Poo, K. M., Ali Abdelkareem, M., Talas, S. A., Fadali, O. A., Kim, H. Y., & Chae, K. J. (2018). Fe/Fe2O3nanoparticles as anode catalyst for exclusive power generation and degradation of organic compounds using microbial fuel cell. Chemical Engineering Journal, 349, 800–807. https://doi.org/10.1016/j.cej.2018.05.138.

    Article  CAS  Google Scholar 

  34. Jung, S. P., Yoon, M. H., Lee, S. M., Oh, S. E., Kang, H., & Yang, J. K. (2014). Power generation and anode bacterial community compositions of sediment fuel cells differing in anode materials and carbon sources. International Journal of Electrochemical Science, 9(1), 315–326 Retrieved from http://www.electrochemsci.org/papers/vol9/90100315.pdf. Accessed 23 May 2020.

  35. Bhowmick, G. D., Das, S., Adhikary, K., Ghangrekar, M. M., & Mitra, A. (2019). Using rhodium as a cathode catalyst for enhancing performance of microbial fuel cell. International Journal of Hydrogen Energy, 44(39), 22218–22222. https://doi.org/10.1016/j.ijhydene.2019.06.063.

    Article  CAS  Google Scholar 

  36. Koo, B., Lee, S. M., Oh, S. E., Kim, E. J., Hwang, Y., Seo, D., Kim, J. Y., Kahng, Y. H., Lee, Y. W., Chung, S. Y., Kim, S. J., Park, J. H., & Jung, S. P. (2019). Addition of reduced graphene oxide to an activated-carbon cathode increases electrical power generation of a microbial fuel cell by enhancing cathodic performance. Electrochimica Acta, 297, 613–622. https://doi.org/10.1016/j.electacta.2018.12.024.

    Article  CAS  Google Scholar 

  37. Nam, T., Son, S., Kim, E., Tran, H. V. H., Koo, B., Chai, H., Kim, J., Pandit, S., Gurung, A., Oh, S. E., Kim, E. J., Choi, Y., & Jung, S. P. (2018). Improved structures of stainless steel current collector increase power generation of microbial fuel cells by decreasing cathodic charge transfer impedance. Environmental Engineering Research, 23(4), 383–389. https://doi.org/10.4491/eer.2017.171.

    Article  Google Scholar 

  38. Kang, H., Jeong, J., Gupta, P. L., & Jung, S. P. (2017). Effects of brush-anode configurations on performance and electrochemistry of microbial fuel cells. International Journal of Hydrogen Energy, 42(45), 27693–27700. https://doi.org/10.1016/j.ijhydene.2017.06.181.

    Article  CAS  Google Scholar 

  39. Nam, T., Son, S., Koo, B., Hoa Tran, H. V., Kim, J. R., Choi, Y., & Jung, S. P. (2017). Comparative evaluation of performance and electrochemistry of microbial fuel cells with different anode structures and materials. International Journal of Hydrogen Energy, 42(45), 27677–27684. https://doi.org/10.1016/j.ijhydene.2017.07.180.

    Article  CAS  Google Scholar 

  40. Noori, M. T., Bhowmick, G. D., Tiwari, B. R., Ghangrekar, M. M., & Mukhrejee, C. K. (2018). Application of low-cost Cu-Sn bimetal alloy as oxygen reduction reaction catalyst for improving performance of the microbial fuel cell. In MRS Advances (Vol. 3, pp. 663–668). Materials Research Society. https://doi.org/10.1557/adv.2018.163.

  41. Ghadge, A. N., & Ghangrekar, M. M. (2015). Development of low cost ceramic separator using mineral cation exchanger to enhance performance of microbial fuel cells. Electrochimica Acta, 166, 320–328. https://doi.org/10.1016/j.electacta.2015.03.105.

    Article  CAS  Google Scholar 

  42. Chatterjee, P., & Ghangrekar, M. M. (2014). Design of clayware separator-electrode assembly for treatment of wastewater in microbial fuel cells. Applied Biochemistry and Biotechnology, 173(2), 378–390. https://doi.org/10.1007/s12010-014-0846-x.

    Article  CAS  PubMed  Google Scholar 

  43. Jung, S., & Regan, J. M. (2011). Influence of external resistance on electrogenesis, methanogenesis, and anode prokaryotic communities in microbial fuel cells. Applied and Environmental Microbiology, 77(2), 564–571. https://doi.org/10.1128/AEM.01392-10.

    Article  CAS  PubMed  Google Scholar 

  44. Jadhav, G. S., & Ghangrekar, M. M. (2008). Improving performance of MFC by design alteration and adding cathodic electrolytes. Applied Biochemistry and Biotechnology, 151(2–3), 319–332. https://doi.org/10.1007/s12010-008-8195-2.

    Article  CAS  PubMed  Google Scholar 

  45. Jadhav, G. S., & Ghangrekar, M. M. (2009). Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration. Bioresource Technology, 100(2), 717–723. https://doi.org/10.1016/j.biortech.2008.07.041.

    Article  CAS  PubMed  Google Scholar 

  46. Kaur, A., Boghani, H. C., Michie, I., Dinsdale, R. M., Guwy, A. J., & Premier, G. C. (2014). Inhibition of methane production in microbial fuel cells: operating strategies which select electrogens over methanogens. Bioresource Technology, 173, 75–81. https://doi.org/10.1016/j.biortech.2014.09.091.

    Article  CAS  PubMed  Google Scholar 

  47. APHA-AWWA-WPCF (1998). Standard Methods for the Examination of Water and Wastewater, 20th edn. American Public Health Association, American Water Works Association, and Water Pollution Control Federation.

  48. Karakashev, D., Batstone, D. J., & Angelidaki, I. (2005). Influence of environmental conditions on methanogenic compositions in anaerobic biogas reactors. Applied and Environmental Microbiology, 71(1), 331–338. https://doi.org/10.1128/AEM.71.1.331-338.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Soto, M., Méndez, R., & Lema, J. M. (1993). Methanogenic and non-methanogenic activity tests. Theoretical basis and experimental set up. Water Research, 27(8), 1361–1376. https://doi.org/10.1016/0043-1354(93)90224-6.

    Article  CAS  Google Scholar 

  50. Puñal, A., Trevisan, M., Rozzi, A., & Lema, J. M. (2000). Influence of C:N ratio on the start-up of up-flow anaerobic filter reactors. Water Research, 34(9), 2614–2619. https://doi.org/10.1016/S0043-1354(00)00161-5.

    Article  Google Scholar 

  51. Jawed, M., & Tare, V. (1999). Microbial composition assessment of anaerobic biomass through methanogenic activity tests. Water SA, 25(3), 345–350 Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.456.3085&rep=rep1&type=pdf. Accessed 23 May 2020.

  52. Sprott, G. D., Shaw, K. M., & Jarrell, K. F. (1984). Ammonia/potassium exchange in methanogenic bacteria. Journal of Biological Chemistry, 259(20), 12602–12608 Retrieved from https://pubmed.ncbi.nlm.nih.gov/6490632. Accessed 23 May 2020.

  53. Sprott, G. D., & Patel, G. B. (1986). Ammonia toxicity in pure cultures of methanogenic bacteria. Systematic and Applied Microbiology, 7(2-3), 358–363. https://doi.org/10.1016/S0723-2020(86)80034-0.

    Article  CAS  Google Scholar 

  54. Jijai, S., Srisuwan, G., O-thong, S., Ismail, N., Siripatana, C., & Sukosol, T. (2014). Specific methanogenic activities (SMA) and biogas production of different granules size and substrates. ( ENRIC 2014 ) The 1 st Environment and Natural Resources Internati, (November), 7–10.

  55. Rajesh, P. P., Jadhav, D. A., & Ghangrekar, M. M. (2015). Improving performance of microbial fuel cell while controlling methanogenesis by Chaetoceros pretreatment of anodic inoculum. Bioresource Technology, 180, 66–71. https://doi.org/10.1016/j.biortech.2014.12.095.

    Article  CAS  PubMed  Google Scholar 

  56. Yenigün, O., & Demirel, B. (2013). Ammonia inhibition in anaerobic digestion: a review. Process Biochemistry, 48(5–6), 901–911. https://doi.org/10.1016/j.procbio.2013.04.012.

    Article  CAS  Google Scholar 

  57. Abourached, C., Catal, T., & Liu, H. (2014). Efficacy of single-chamber microbial fuel cells for removal of cadmium and zinc with simultaneous electricity production. Water Research, 51, 228–233. https://doi.org/10.1016/j.watres.2013.10.062.

    Article  CAS  PubMed  Google Scholar 

  58. Nancharaiah, Y. V., Venkata Mohan, S., & Lens, P. N. L. (2015). Recent advances in nutrient removal and recovery in biological and bioelectrochemical systems. Bioresource Technology, 195, 102–114. https://doi.org/10.1016/j.biortech.2015.06.058.

    Article  CAS  PubMed  Google Scholar 

  59. Bhowmick, G. D., Das, S., Verma, H. K., Neethu, B., & Ghangrekar, M. M. (2019). Improved performance of microbial fuel cell by using conductive ink printed cathode containing Co3O4 or Fe3O4. Electrochimica Acta, 310, 173–183. https://doi.org/10.1016/j.electacta.2019.04.127.

    Article  CAS  Google Scholar 

  60. Ramasamy, R. P., Ren, Z., Mench, M. M., & Regan, J. M. (2008). Impact of initial biofilm growth on the anode impedance of microbial fuel cells. Biotechnology and Bioengineering, 101(1), 101–108. https://doi.org/10.1002/bit.21878.

    Article  CAS  PubMed  Google Scholar 

  61. Ramasamy, R. P., Gadhamshetty, V., Nadeau, L. J., & Johnson, G. R. (2009). Impedance spectroscopy as a tool for non-intrusive detection of extracellular mediators in microbial fuel cells. Biotechnology and Bioengineering, 104(5), 882–891. https://doi.org/10.1002/bit.22469.

    Article  CAS  PubMed  Google Scholar 

  62. Rajesh, P. P., Noori, M. T., & Ghangrekar, M. M. (2014). Controlling methanogenesis and improving power production of microbial fuel cell by lauric acid dosing. Water Science and Technology : a Journal of the International Association on Water Pollution Research, 70(8), 1363–1369. https://doi.org/10.2166/wst.2014.386.

    Article  CAS  Google Scholar 

  63. Kadam, P. C., & Boone, D. R. (1996). Influence of pH on ammonia accumulation and toxicity in halophilic, methylotrophic methanogens. Applied and Environmental Microbiology, 62(12), 4486–4492. https://doi.org/10.1128/aem.62.12.4486-4492.1996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kayhanian, M. (1999). Ammonia inhibition in high-solids biogasification: an overview and practical solutions. Environmental Technology (United Kingdom), 20(4), 355–365. https://doi.org/10.1080/09593332008616828.

    Article  CAS  Google Scholar 

  65. Zhang, Y., Jiang, Z., Zhao, Q., Zhang, Z., Su, H., Gao, X., & Ye, Z. (2016). Treatment of soil eluate containing nitro aromatic compounds by adsorption on activated coke (AC). Water Science and Technology, 73(6), 1313–1319. https://doi.org/10.2166/wst.2015.581.

    Article  PubMed  Google Scholar 

  66. Rajesh, P. P., Noori, M. T., & Ghangrekar, M. M. (2018). Pre-treatment of anodic inoculum with nitroethane to improve performance of a microbial fuel cell. Water Science and Technology, 77(10), 2491–2496. https://doi.org/10.2166/wst.2018.206.

    Article  CAS  PubMed  Google Scholar 

  67. Gallert, C., Bauer, S., & Winter, J. (1998). Effect of ammonia on the anaerobic degradation of protein by a mesophilic and thermophilic biowaste population. Applied Microbiology and Biotechnology, 50(4), 495–501. https://doi.org/10.1007/s002530051326.

    Article  CAS  PubMed  Google Scholar 

  68. Wittmann, C., Zeng, A. P., & Deckwer, W. D. (1995). Growth inhibition by ammonia and use of a pH-controlled feeding strategy for the effective cultivation of Mycobacterium chlorophenolicum. Applied Microbiology and Biotechnology, 44(3-4), 519–525. https://doi.org/10.1007/BF00169954.

    Article  CAS  PubMed  Google Scholar 

  69. Neethu, B., Bhowmick, G. D., & Ghangrekar, M. M. (2018). Enhancement of bioelectricity generation and algal productivity in microbial carbon-capture cell using low cost coconut shell as membrane separator. Biochemical Engineering Journal, 133, 205–213. https://doi.org/10.1016/j.bej.2018.02.014.

    Article  CAS  Google Scholar 

  70. Ahilan, V., de Barros, C. C., Bhowmick, G. D., Ghangrekar, M. M., Murshed, M. M., Wilhelm, M., & Rezwan, K. (2019). Microbial fuel cell performance of graphitic carbon functionalized porous polysiloxane based ceramic membranes. Bioelectrochemistry, 129, 259–269. https://doi.org/10.1016/j.bioelechem.2019.06.002.

    Article  CAS  PubMed  Google Scholar 

  71. Türk, K. K., Kruusenberg, I., Kibena-Põldsepp, E., Bhowmick, G. D., Kook, M., Tammeveski, K., Matisen, L., Merisalu, M., Sammelselg, V., Ghangrekar, M. M., Mitra, A., & Banerjee, R. (2018). Novel multi walled carbon nanotube based nitrogen impregnated Co and Fe cathode catalysts for improved microbial fuel cell performance. International Journal of Hydrogen Energy, 43(51), 23027–23035. https://doi.org/10.1016/j.ijhydene.2018.10.143.

    Article  CAS  Google Scholar 

  72. Ge, Z., Li, J., Xiao, L., Tong, Y., & He, Z. (2014). Recovery of electrical energy in microbial fuel cells. Environmental Science and Technology Letters, 1(2), 137–141. https://doi.org/10.1021/ez4000324.

    Article  CAS  Google Scholar 

Download references

Funding

This research work was supported by the Department of Biotechnology, Government of India (BT/IN/INNO-INDIGO/28/MMG/2015-16), by providing financial assistance for performing the research experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Ghangrekar.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhowmick, G.D., Neethu, B., Ghangrekar, M.M. et al. Improved Performance of Microbial Fuel Cell by In Situ Methanogenesis Suppression While Treating Fish Market Wastewater. Appl Biochem Biotechnol 192, 1060–1075 (2020). https://doi.org/10.1007/s12010-020-03366-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03366-y

Keywords

Navigation