Fungal Hydrophobin RolA Enhanced PETase Hydrolysis of Polyethylene Terephthalate

Abstract

Polyethylene terephthalate (PET) becomes one of the most well-known polyesters and is widely used as packaging material. Recently, polyethylene terephthalate hydrolase (PETase) has emerged as a potential biocatalyst demonstrating the ability to degrade polyethylene terephthalate (PET). We showed that the rate of PETase hydrolysis could be significantly increased in the presence of hydrophobin RolA. Hydrophobins represent a class of small fungal protein that has a high surface-active substance and can spontaneously self-assemble at hydrophilic-hydrophobic interfaces. In this work, a class I hydrophobin named RolA was extracted from the mycelium pellet collected from a fermentation culture of Aspergillus oryzae. The SDS-PAGE analysis of the isolated RolA showed the presence of 11 kDa polypeptide. Recombinant PETase from Ideonella sakaiensis was also successfully expressed in Escherichia coli as a soluble protein with molecular weight approximately 30 kDa. The hydrophobin RolA could enhance the PET hydrolysis in the presence of the recombinant PETase. The hydrolysis of PET bottle by RolA-PETase achieved the highest weight loss of 26% in 4 days. It is speculated that the wetting effect of RolA acts on PET surface converts PET to become hydrophilic that leads PETase easier to contact and attack the surface.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Plastics-the Facts 2018. Available from: www.plasticseurope.org. Accessed September 10, 2019.

  2. 2.

    López, M. D. M. C., Pernas, A. I. A., López, M. J. A., Latorre, A. L., Vilariño, J. M. L., & Rodríguez, M. V. G. (2014). Assessing changes on poly(ethylene terephthalate) properties after recycling: mechanical recycling in laboratory versus postconsumer recycled material. Materials Chemistry and Physics., 147(3), 884–894.

    Article  Google Scholar 

  3. 3.

    Awaja, F., & Pavel, D. (2005). Recycling of PET. European Polymer Journal., 41(7), 1453–1477.

    CAS  Article  Google Scholar 

  4. 4.

    Schiraldi, D. A., Scheirs, J., & Long, T. E. (2003). Modern polyesters: chemistry and technology of polyesters and copolyesters (pp. 245–266). New York: Wiley.

    Google Scholar 

  5. 5.

    Balani, K., Verma, V., Agarwal, A., & Narayan, R. (2015). Biosurfaces: a materials science and engineering perspective (1st ed.p. 330). New York: Wiley.

    Google Scholar 

  6. 6.

    Al-Sabagh, A. M., Yehia, F. Z., Eshaq, G., Rabie, A. M., & ElMetwally, A. E. (2016). Greener routes for recycling of polyethylene terephthalate. Egyptian Journal of Petroleum., 25(1), 53–64.

    Article  Google Scholar 

  7. 7.

    Ruvolo-Filho, A., & Curti, P. S. (2006). Chemical kinetic model and thermodynamic compensation effect of alkaline hydrolysis of waste poly(ethylene terephthalate) in nonaqueous ethylene glycol solution. Industrial & Engineering Chemistry Research., 45(24), 7985–7996.

    CAS  Article  Google Scholar 

  8. 8.

    Oromiehie, A., & Mamizadeh, A. (2004). Recycling PET beverage bottles and improving properties. Polymer International., 53(6), 728–732.

    CAS  Article  Google Scholar 

  9. 9.

    Webb, H. K., Arnott, J., Crawford, R. J., & Ivanona, E. P. (2013). Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate). Polymer., 5(1), 1–18.

    Google Scholar 

  10. 10.

    Mueller, R. J., Kleeberg, I., & Deckwer, W. D. (2001). Biodegradation of polyesters containing aromatic constituents. Journal of Biotechnology., 86(2), 87–95.

    Article  Google Scholar 

  11. 11.

    Zimmermann, W., & Billig, S. (2010). Enzymes for the biofunctionalization of poly(ethylene terephthalate). In G. Nyanhongo, W. Steiner, & G. Gubitz (Eds.), Biofunctionalization of polymer and their applications. Advanced in Biochemical Engineering / Biotechnology (pp. 97–120). Berlin: Springer.

    Google Scholar 

  12. 12.

    Wei, R., & Zimmermann, W. (2017). Biocatalysis as a green route for recycling the recalcitrant plastic polyethylene terephthalate. Microbial Biotechnololgy., 10(6), 1302–1307.

    CAS  Article  Google Scholar 

  13. 13.

    Heumann, S., Eberl, A., Pobeheim, H., Liebminger, S., Fischer-Colbrie, G., Almansa, E., Cavaco-Paulo, A., & Guebitz, G. M. (2006). New model substrates for enzymes hydrolysing polyethylene terephthalate and polyamide fibres. Journal of Biochemical and Biophysical Methods, 69(1-2), 89–99.

    CAS  Article  Google Scholar 

  14. 14.

    Vertommen, M. A. M. E., Nierstrasz, V. A., van der Veer, M., & Warmoeskerken, M. M. C. G. (2005). Enzymatic surface modification of poly(ethylene terephthalate). Journal of Biotechnology., 120(4), 376–386.

    CAS  Article  Google Scholar 

  15. 15.

    Nyyssola, A. (2015). Which properties of cutinases are important for applications? Applied Microbiology and Biotechnology., 99(12), 4931–4942.

    CAS  Article  Google Scholar 

  16. 16.

    Herrero Acero, E., Ribitsch, D., Steinkellner, G., Gruber, K., Greimel, K., Eiteljoerg, I., Trotscha, E., Wei, R., Zimmermann, W., Zinn, M., Cavaco-Paulo, A., Freddi, G., Schwab, H., & Guebitz, G. (2011). Enzymatic surface hydrolysis of PET: effect of structural diversity on kinetic properties of cutinases from Thermobifida. Macromolecules., 44(12), 4632–4640.

    CAS  Article  Google Scholar 

  17. 17.

    Silva, C. M., Carneiro, F., O’Neill, A., Fonseca, L. P., Cabral, J. S., Guebitz, G., et al. (2005). Cutinase—a new tool for biomodification of synthetic fibers. Journal of Polymer Science Part A Polymer Chemistry., 43(11), 2448–2450.

    CAS  Article  Google Scholar 

  18. 18.

    Mueller, R. J., Schrader, H., Profe, J., Dresler, K., & Deckwer, W. D. (2005). Enzymatic degradation of poly(ethylene terephthalate): rapid hydrolyse using a hydrolase from T. fusca. Maromolecular Rapid Communications., 26(17), 1400–1405.

    CAS  Article  Google Scholar 

  19. 19.

    Vries, O. M. D., Fekkes, M. P., Wosten, H. A. B., & Wessels, J. G. (1993). Insoluble hydrophobin complexes in the walls of Schizophyllum commune and other filamentous fungi. Archives of Microbiology., 159(4), 330–335.

    Article  Google Scholar 

  20. 20.

    Linder, M. B., Szilvay, G. R., Nakari-Setälä, T., & Penttilä, M. E. (2005). Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiology Reviews., 29(5), 877–896.

    CAS  Article  Google Scholar 

  21. 21.

    Kulkarni, S., Nene, S., & Joshi, K. (2017). Production of hydrophobins from fungi. Process Biochemistry., 61, 1–11.

    CAS  Article  Google Scholar 

  22. 22.

    Armenante, A., Longobardi, S., Rea, I., Stefano, L. D., Giocondo, M., Silipo, A., Molinaro, A., & Giardina, P. (2010). The Pleurotus ostreatus hydrophobin Vmh2 and its interaction with glucans. Glycobiology., 20(5), 594–602.

    CAS  Article  Google Scholar 

  23. 23.

    Ma, Y., Yao, M., Li, B., Ding, M., He, B., Chen, S., & Zhou, X. (2018). Enhanced poly(ethylene terephthalate) hydrolase activity by protein engineering. Engineering., 4(6), 888–893.

    CAS  Article  Google Scholar 

  24. 24.

    Ribitsch, D., Herrero Acero, E., Przylucka, A., Zitzenbacher, S., Marold, A., Gamerith, C., Tscheließnig, R., Jungbauer, A., Rennhofer, H., Lichtenegger, H., Amenitsch, H., Bonazza, K., Kubicek, C. P., Druzhinina, I. S., & Guebitz, G. M. (2015). Enhanced cutinase-catalyzed hydrolysis of polyethylene by covalent fusion to hydrophobins. Applied and Environmental Microbiology., 81(11), 3586–3592.

    CAS  Article  Google Scholar 

  25. 25.

    Lumsdon, S. O., Green, J., & Stieglitz, B. (2005). Adsorption of hydrophobin proteins at hydrophobic and hydrophilic interfaces. Colloids and Surfaces B: Biointerfaces., 44(4), 172–178.

    CAS  Article  Google Scholar 

  26. 26.

    Wösten, H. A., & de Vocht, M. L. (2000). Hydrophobins, the fungal coat unravelled. Biochimica et Biophysica Acta., 1469(2), 79–86.

    Article  Google Scholar 

  27. 27.

    Yu, L., Zhang, B., Szilvay, G. R., Sun, R., Janis, J., Wang, Z., et al. (2008). Protein HGFI from the edible mushroom Grifola frondosa is a novel 8 kDa class I hydrophobin that forms rodlets in compressed monolayers. Microbiology., 154(6), 1677–1685.

    CAS  Article  Google Scholar 

  28. 28.

    Austin, H. P., Allen, M. D., Donohoe, B. S., Rorrer, N. A., Kearns, F. L., Silveira, R. L., Pollard, B. C., Dominick, G., Duman, R., el Omari, K., Mykhaylyk, V., Wagner, A., Michener, W. E., Amore, A., Skaf, M. S., Crowley, M. F., Thorne, A. W., Johnson, C. W., Woodcock, H. L., McGeehan, J. E., & Beckham, G. T. (2018). Characterization and engineering of a plastic-degrading aromatic polyesterase. Proceedings of the National Academy of Sciences of the United States of America., 115(19), E4350–E4357.

    CAS  Article  Google Scholar 

  29. 29.

    Wang, H., Li, Z., Liu, Y., Zhang, X., & Zhang, S. (2009). Degradation of poly(ethylene terephthalate) using ionic liquids. Green Chemistry., 11(10), 1568–1575.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Cheng-Kang Lee.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The presenting author of this manuscript in ACB2019 is Nathania Puspitasari.

Electronic supplementary material

ESM 1

(DOCX 2.60 mb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Puspitasari, N., Tsai, SL. & Lee, CK. Fungal Hydrophobin RolA Enhanced PETase Hydrolysis of Polyethylene Terephthalate. Appl Biochem Biotechnol 193, 1284–1295 (2021). https://doi.org/10.1007/s12010-020-03358-y

Download citation

Keywords

  • Hydrophobin
  • PETase
  • Recombinant
  • Self-assemble
  • PET degradation