Role of a Two-Component Signal Transduction System RspA1/A2 in Regulating the Biosynthesis of Salinomycin in Streptomyces albus

Abstract

The two-component system “AfsQ1/Q2” plays a crucial role to activate the production of antibiotics ACT, RED, and CDA through directly binding the promoters of pathway-specific activator genes actII-ORF4, redZ, and cdaR respectively when grown under glutamate-supplemented minimal medium in Streptomyces coelicolor. In this report, we demonstrated that the RspA1/A2 (a homologous protein of two-component system AfsQ1/Q2) plays a regulatory role in salinomycin biosynthesis in Streptomyces albus. Gene deletion and complementation experiments showed that the RspA1/A2 promoted salinomycin production but inhibited cell growth when cultured in YMG medium supplemented with 3% soybean oil. More importantly, RspA1/A2 strengthens salinomycin biosynthesis by directly affecting the transcription of the pathway-specific activator gene slnR. Meanwhile, RspA1/A2 plays a negative role in the regulation of nitrogen assimilation and urea decarboxylation by interacting with the promoters of genes gdhA, glnA, amtB, and SLNWT_1828/1829. Gene sigW is located downstream of rspA1/A2 and encodes an extracytoplasmic function sigma factor. Moreover, it negatively regulates the salinomycin biosynthesis and promotes cell growth, which antagonizes the function of RspA1/A2. In short, these useful findings are proved helpful to enrich the understanding of the regulatory pathways of antibiotic biosynthesis by an ECF σ factor-TCS signal transduction system in Streptomyces.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Worthen, D. B. (2008). Streptomyces in Nature and Medicine: The Antibiotic Makers. Journal of the History of Medicine and Allied Sciences, 63(272), 273–274.

    Google Scholar 

  2. 2.

    Gumila, C., Ancelin, M. L., Delort, A. M., Jeminet, G., & Vial, H. J. (1997). Characterization of the potent in vitro and in vivo antimalarial activities of ionophore compounds. Antimicrobial Agents and Chemotherapy, 41(3), 523–529.

    CAS  Article  Google Scholar 

  3. 3.

    Jianqiang, H., Jing, S., Virginie, M., BjRn, S., David, W., Bibb, M. J., Nitsara, K., Chih-Jian, L., Kao, C. M., & Buttner, M. J. (2010). Cross-regulation among disparate antibiotic biosynthetic pathways of Streptomyces coelicolor. Molecular Microbiology, 58, 1276–1287.

    Google Scholar 

  4. 4.

    Zhu, Z., Li, H., Yu, P., Guo, Y., Luo, S., Chen, Z., Mao, X., Guan, W., & Li, Y. (2017). SlnR is a positive pathway-specific regulator for salinomycin biosynthesis in Streptomyces albus. Applied Microbiology and Biotechnology.

  5. 5.

    Chang, H. M., Chen, M. Y., Shieh, Y. T., Bibb, M. J., & Chen, C. W. (1996). The CutR/S signal transduction system of Streptomyces lividans represses the biosynthesis of the polyketide antibiotic actinorhodin. Molecular Microbiology, 21, 1075–1085.

    CAS  PubMed  Google Scholar 

  6. 6.

    Mascher, T., Helmann, J. D., & Unden, G. (2006). Stimulus perception in bacterial signal-transducing histidine kinases. Microbiology and Molecular Biology Reviews, 70(4), 910–938.

    CAS  Article  Google Scholar 

  7. 7.

    Krell, T., Lacal, J., Busch, A., Silvajiménez, H., Guazzaroni, M. E., & Ramos, J. L. (2010). Bacterial sensor kinases: Diversity in the recognition of environmental signals. Annual Review of Microbiology, 64(1), 539–559.

    CAS  Article  Google Scholar 

  8. 8.

    Bourret, R. B., & Silversmith, R. E. (2010). Two-component signal transduction. Annual Review of Biochemistry, 13, 113–115.

    Google Scholar 

  9. 9.

    Alberto, S. L., Antonio, R. G., Alexander Kristian, A., & Martín, J. F. (2008). Target genes and structure of the direct repeats in the DNA-binding sequences of the response regulator PhoP in Streptomyces coelicolor. Nucleic Acids Research, 36, 1358–1368.

    Article  Google Scholar 

  10. 10.

    Hutchings, M., Hong, H., & Buttner, M. (2010). The vancomycin resistance VanR/S two-component signal transduction system of Streptomyces coelicolor. Molecular Microbiology, 59, 923–935.

    Article  Google Scholar 

  11. 11.

    Zaburannyi, N., Rabyk, M., Ostash, B., Fedorenko, V., & Luzhetskyy, A. (2014). Insights into naturally minimised Streptomyces albus J1074 genome. BMC Genomics, 15, 97. https://doi.org/10.1186/1471-2164-15-97.

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Ishizuka, H., Horinouchi, S., Kieser, H. M., Hopwood, D. A. and Beppu, T.(1992). A putative two-component regulatory system involved in secondary metabolism in Streptomyces spp. Journal of Bacteriology, 174, 7585-7594, 23.

    CAS  Article  Google Scholar 

  13. 13.

    Shu, D., Chen, L., Wang, W., Yu, Z., Ren, C., Zhang, W., & Yang, S. (2009). afsQ1-Q2-sigQ is a pleiotropic but conditionally required signal transduction system for both secondary metabolism and morphological development in Streptomyces coelicolor. Applied Microbiology and Biotechnology, 81(6), 1149–1160.

    CAS  Article  Google Scholar 

  14. 14.

    Rui, W., Yvonne, M., Jin, W., Weiwen, Z., Guoping, Z., Wolfgang, W., Yinhua, L., & Weihong, J. (2013). Identification of two-component system AfsQ1/Q2 regulon and its cross-regulation with GlnR in Streptomyces coelicolor. Molecular Microbiology, 87, 30–48.

    Article  Google Scholar 

  15. 15.

    Chen, S., Zheng, G., Zhu, H., He, H., Chen, L., Zhang, W., Jiang, W., & Lu, Y. (2016). Roles of two-component system AfsQ1/Q2 in regulating biosynthesis of the yellow-pigmented coelimycin P2 in Streptomyces coelicolor. FEMS Microbiology Letters, 363, fnw160.

    Article  Google Scholar 

  16. 16.

    Shuai, L., Di, S., Jianya, Z., Zhi, C., Ying, W., & Jilun, L. (2014). An extracytoplasmic function sigma factor, σ(25), differentially regulates avermectin and oligomycin biosynthesis in Streptomyces avermitilis. Applied Microbiology and Biotechnology, 98, 7097–7112.

    Article  Google Scholar 

  17. 17.

    Zhang, K., Mohsin, A., Dai, Y., Chen, Z., Zhuang, Y., Chu, J. and Guo, M. (2019).Combinatorial effect of ARTP mutagenesis and ribosome engineering on an industrial strain of Streptomyces albus S12 for enhanced biosynthesis of salinomycin. Frontiers in Bioengieering and Biotechnology, pp. 212.

  18. 18.

    Bierman, M., Logan, R., O’Brien, K., Seno, E. T., Rao, R. N., & Schoner, B. E. (1992). Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene, 116(1), 43–49.

    CAS  Article  Google Scholar 

  19. 19.

    Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 25(4), 402–408.

    CAS  Article  Google Scholar 

  20. 20.

    You, D., Wang, M. M., & Ye, B. C. (2017). Acetyl-CoA synthetases of Saccharopolyspora erythraea are regulated by the nitrogen response regulator GlnR at both transcriptional and post-translational levels. Molecular Microbiology, 103(5), 845–859.

    CAS  Article  Google Scholar 

  21. 21.

    Lu, C., Zhang, X., Jiang, M., & Bai, L. (2016). Enhanced salinomycin production by adjusting the supply of polyketide extender units in Streptomyces albus. Metabolic Engineering, 35, 129–137.

    CAS  Article  Google Scholar 

  22. 22.

    Zhang, X., Lu, C., & Bai, L. (2017). Mechanism of salinomycin overproduction in Streptomyces albus as revealed by comparative functional genomics. Applied Microbiology and Biotechnology, 101(11), 4635–4644.

    CAS  Article  Google Scholar 

  23. 23.

    Mobley, H. L., Island, M. D., & Hausinger, R. P. (1995). Molecular biology of microbial ureases. Microbiology and Molecular Biology Reviews, 59, 451–480.

    CAS  Google Scholar 

  24. 24.

    Mobley, H. L., & Hausinger, R. P. (1989). Microbial ureases: significance, regulation, and molecular characterization. Microbiological Reviews, 53(1), 85–108.

    CAS  Article  Google Scholar 

  25. 25.

    Zhao, J., Zhu, L., Fan, C., Wu, Y., & Xiang, S. (2017). Structure and function of urea amidolyase. Bioscience Reports, 38, BSR20171617.

    Article  Google Scholar 

  26. 26.

    Rodríguez, H., Rico, S., Díaz, M., & Santamaría, R. I. (2013). Two-component systems in Streptomyces: Key regulators of antibiotic complex pathways. Microbial Cell Factories, 12(1), 127.

    Article  Google Scholar 

  27. 27.

    Apel, A. K., Alberto, S. L., Antonio, R. G., & Martín, J. F. (2007). Phosphate control of phoA, phoC and phoD gene expression in Streptomyces coelicolor reveals significant differences in binding of PhoP to their promoter regions. Microbiology, 153(10), 3527–3537.

    CAS  Article  Google Scholar 

  28. 28.

    Zhenyu, Y., Hong, Z., Fujun, D., Weiwen, Z., Zhongjun, Q., Sheng, Y., Huarong, T., Yinhua, L., & Weihong, J. (2012). Differential regulation of antibiotic biosynthesis by DraR-K, a novel two-component system in Streptomyces coelicolor. Molecular Microbiology, 85, 535–556.

    Article  Google Scholar 

  29. 29.

    Hee-Jeon, H., Paget, M. S. B., & Buttner, M. J. (2008). A signal transduction system in Streptomyces coelicolor that activates the expression of a putative cell wall glycan operon in response to vancomycin and other cell wall-specific antibiotics. Molecular Microbiology, 69, 1199–1211.

    Google Scholar 

Download references

Acknowledgments

We thank Zhejiang Biok Biology Co., Ltd. for providing strains and other experimental help.

Funding

This research was supported by the National Natural Science Foundation of China (81373286) and Fundamental Research Funds for the China Central Universities (No.22221818014 and No.22221817014) and 111 Project (B18022) to Meijin Guo.

Author information

Affiliations

Authors

Contributions

All authors saw and approved the manuscript. All authors contributed significantly to the work. Meijin Guo and Kuipu Zhang conceived the project. Meijin Guo, Kuipu Zhang designed experiments and analyzed results. Kuipu Zhang wrote the manuscript with the help of Ali Mohsin, Muhammad Fahad Ali, Meijin Guo, Yingping Zhuang, and Ju Chu. Kuipu Zhang performed experiments, supported by Yichen Dai, Zhongbing Chen.

Corresponding author

Correspondence to Meijin Guo.

Ethics declarations

Conflict of Interest

Author Zhongbing Chen was employed by the company Zhejiang Biok Biology Co., Ltd. All other authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The presenting author of this manuscript in ACB2019 is Kuipu Zhang.

Electronic Supplementary Materials

ESM 1

(DOCX 40 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Mohsin, A., Dai, Y. et al. Role of a Two-Component Signal Transduction System RspA1/A2 in Regulating the Biosynthesis of Salinomycin in Streptomyces albus. Appl Biochem Biotechnol 193, 1296–1310 (2021). https://doi.org/10.1007/s12010-020-03357-z

Download citation

Keywords

  • Streptomyces albus
  • Salinomycin biosynthesis
  • Regulation
  • Two-component system
  • Urea decarboxylation