Expression of Highly Active Bacterial Phospholipase A2 in Yeast Using Intein-Mediated Delayed Protein Autoactivation

Abstract

Phospholipase A2 (PLA2) has found extensive use in industry. However, recombinant PLA2 production in different expression systems is a difficult task because of its toxicity to cell membranes. We report here the development of an effective method for production of highly active PLA2 from Streptomyces violaceoruber strain A-2688 in the yeast Saccharomyces cerevisiae. The method is based on the use of the PRP8 mini-intein (from Penicillium chrysogenum) inserted into the phospholipase sequence with the purpose of temporal inactivation of the enzyme and its subsequent delayed autoactivation. We demonstrate that the most effective site for intein insertion is Ser76 of the mature phospholipase. As a result of intein-containing precursor secretion from yeast cells and its subsequent autocatalytic splicing, highly active enzyme accumulated in the yeast culture fluid. The properties of the obtained recombinant phospholipase A2 protein were similar to those of the native Streptomyces violaceoruber PLA2 protein. A possible evolutionary role of delayed autoactivation of intein-containing proteins is also discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Juturu, V., & Wu, J. C. (2018). Heterologous protein expression in Pichia pastoris: latest research progress and applications. ChemBioChem, 19(1), 7–21.

    CAS  Article  Google Scholar 

  2. 2.

    Raveendran, S., Parameswaran, B., Ummalyma, S. B., Abraham, A., Mathew, A. K., Madhavan, A., Rebello, S., & Pandey, A. (2018). Applications of microbial enzymes in food industry. Food Technology and Biotechnology, 56(1), 16–30.

    CAS  Article  Google Scholar 

  3. 3.

    Singh, R., Kumar, M., Mittal, A., & Mehta, P. K. (2016). Microbial enzymes: industrial progress in 21st century. 3 Biotech, 6, 174.

    Article  Google Scholar 

  4. 4.

    Lian, J., Mishra, S., & Zhao, H. (2018). Recent advances in metabolic engineering of Saccharomyces cerevisiae: new tools and their applications. Metabolic Engineering, 50, 85–108.

    CAS  Article  Google Scholar 

  5. 5.

    Cheperegin, S. E., Sannikova, E. P., Malysheva, A. V., Klebanov, F. A., & Kozlov, D. G. (2019). The highly active modified variants of recombinant phospholipase A2 Streptomyces violaceoruber for effective biosynthesis in yeasts. Biotekhnologiya, 35, 30–41.

    Article  Google Scholar 

  6. 6.

    Liu, A., Yu, X. W., Sha, C., & Xu, Y. (2015). Streptomyces violaceoruber phospholipase A2: expression in Pichia pastoris, properties, and application in oil degumming. Applied Biochemistry and Biotechnology, 175(6), 3195–3206.

    CAS  Article  Google Scholar 

  7. 7.

    Lefkowitz, L. J., Deems, R. A., & Dennis, E. A. (1999). Expression of group IA phospholipase A2 in Pichia pastoris: identification of a phosphatidylcholine activator site using site-directed mutagenesis. Biochemistry, 38(43), 14174–14184.

    CAS  Article  Google Scholar 

  8. 8.

    Kaneko, H., Hosohara, M., Tanaka, M., & Itoh, T. (1976). Lipid composition of 30 species of yeast. Lipids, 11(12), 837–844.

    CAS  Article  Google Scholar 

  9. 9.

    Sugiyama, M., Ohtan, K., Izuhara, M., Koike, T., Suzuki, K., Imamura, S., & Misaki, H. (2002). A novel prokaryotic phospholipase A2. Characterization, gene cloning, and solution structure. The Journal of Biological Chemistry, 277(22), 20051–20058.

    CAS  Article  Google Scholar 

  10. 10.

    Shoseyov, O., Shani, Z., & Levy, I. (2006). Carbohydrate binding modules: biochemical properties and novel applications. Microbiology and Molecular Biology Reviews, 70(2), 283–295.

    CAS  Article  Google Scholar 

  11. 11.

    Stringer, M.A., Fatum, T.M. & Patkar, S.A. (2004). Phospholipase and method of producing it. Patent WO2004097012A3, Application number PCT/DK2004/000279, 23.04.2004.

  12. 12.

    Novikova, O., Topilina, N., & Belfort, M. (2014). Enigmatic distribution, evolution, and function of inteins. The Journal of Biological Chemistry, 289(21), 14490–14497.

    CAS  Article  Google Scholar 

  13. 13.

    Pavankumar, T. L. (2018). Inteins: localized distribution, gene regulation, and protein engineering for biological applications. Microorganisms, 6(1), 19. https://doi.org/10.3390/microorganisms6010019.

    CAS  Article  PubMed Central  Google Scholar 

  14. 14.

    Carvajal-Vallejos, P., Pallissé, R., Mootz, H. D., & Schmidt, S. R. (2012). Unprecedented rates and efficiencies revealed for new natural split inteins from metagenomic sources. The Journal of Biological Chemistry, 287(34), 28686–28696.

    CAS  Article  Google Scholar 

  15. 15.

    Amitai, G., Callahan, B.P., Stanger, M.J., Belfort, G. & Belfort, M. (2009). Modulation of intein activity by its neighboring extein substrates. Proceedings of the National Academy of Sciences of the USA, 106, 11005–11010.

  16. 16.

    Chong, S., Williams, K. S., Wotkowicz, C., & Xu, M. Q. (1998). Modulation of protein splicing of the Saccharomyces cerevisiae vacuolar membrane ATPase intein. The Journal of Biological Chemistry, 273(17), 10567–10577.

    CAS  Article  Google Scholar 

  17. 17.

    Novick, P., & Schekman, R. (1983). Export of major cell surface proteins is blocked in yeast secretory mutants. Journal of Cell Biology, 96(2), 541–547.

    CAS  Article  Google Scholar 

  18. 18.

    Elleuche, S., Nolting, N., & Pöggeler, S. (2006). Protein splicing of PRP8 mini-inteins from species of the genus Penicillium. Applied Microbiology and Biotechnology, 72(5), 959–967.

    CAS  Article  Google Scholar 

  19. 19.

    Gogarten, J. P., Senejani, A. G., Zhaxybayeva, O., Olendzenski, L., & Hilario, E. (2002). Inteins: structure, function, and evolution. Annual Review of Microbiology, 56(1), 263–287.

    CAS  Article  Google Scholar 

  20. 20.

    Wood, D. W., & Camarero, J. A. (2014). Intein applications: from protein purification and labeling to metabolic control methods. The Journal of Biological Chemistry, 289(21), 14512–14519.

    CAS  Article  Google Scholar 

  21. 21.

    Aranko, A. S., Wlodawer, A., & Iwa, H. (2014). Nature’s recipe for splitting inteins. Protein Engineering, Design and Selection, 27(8), 263–271.

    CAS  Article  Google Scholar 

  22. 22.

    Shah, N. H., Dann, G. P., & Vila–Perelló, M., Liu, Z. & Muir, T.W. (2012). Ultrafast protein splicing is common among cyanobacterial split inteins: implications for protein engineering. Journal of the American Chemical Society, 134(28), 11338–11341.

  23. 23.

    Maniatis, T., Fritsch, E. F., & Sambrook, J. (1982). Molecular cloning. A laboratory manual. NY: Cold Spring Harbor Laboratory.

    Google Scholar 

  24. 24.

    Urban, A., Neukirchen, S., & Jaeger, K. E. (1997). A rapid and efficient method for site–directed mutagenesis using one–step overlap extension PCR. Nucleic Acids Research, 25(11), 2227–2228.

    CAS  Article  Google Scholar 

  25. 25.

    Yanish-Perron, C., Vieira, J., & Messing, J. (1985). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene, 33, 568–572.

    Google Scholar 

  26. 26.

    Mathys, S., Evans Jr., T. C., Chute, I. C., Wu, H., Chong, S., Benner, J., Liu, X. Q., & Xu, M. Q. (1999). Characterization of a self-splicing mini-intein and its conversion into autocatalytic N- and C-terminal cleavage elements: facile production of protein building blocks for protein ligation. Gene, 231(1-2), 1–13.

    CAS  Article  Google Scholar 

  27. 27.

    Kartasheva, N. N., Kuchin, S. V., & Benevolensky, S. V. (1996). Genetic aspects of carbon catabolite repression of the STA2 glucoamylase gene in Saccharomyces cerevisiae. Yeast, 12(13), 1297–1300.

    CAS  Article  Google Scholar 

  28. 28.

    Gietz, R. D., & Schiestl, R. H. (2007). Quick and easy yeast transformation using the LiAc/SS carrier DNA/PEG method. Nature Protocols, 2(1), 35–37.

    CAS  Article  Google Scholar 

  29. 29.

    Bogush, V.G., Beburov, M.Y., Debabov, V.G., Kozlov, D.G., Gubaydullin, I.I., Davydova L.I., Zalunin, I.A., Sidoruk K.V. & Cheperegin S.E. (2016). Method for producing web protein, a fused protein, recombinant DNA, an expression vector, a host cell and strain-producers. United States Patent No.: US 9,475, 852 B2.

  30. 30.

    Kazachenko, K. Y., Efremov, B. D., & Kozlov, D. G. (2014). Activities of elements of the yeast α-factor precursor leader at different stages of somatropin secretion by Saccharomyces cerevisiae. Applied Biochemistry and Microbiology, 50(9), 829–834.

    CAS  Article  Google Scholar 

  31. 31.

    Tyurin, O. V., Gubaydullin, I. I., Cheperegin, S. E., Efremov, B. D., & Kozlov, D. G. (2013). Amplification of leader proregions as a mean to increase the secretion of antibody fragments in the Pichia pastoris yeast. Applied Biochemistry and Microbiology, 49(7), 656–659.

    CAS  Article  Google Scholar 

  32. 32.

    Matoba, Y., Katsube, Y., & Sugiyama, M. (2002). The crystal structure of prokaryotic phospholipase A2. The Journal of Biological Chemistry, 277(22), 20059–20069.

    CAS  Article  Google Scholar 

  33. 33.

    Wu, W., Wood, D. W., Belfort, G., Derbyshire, V., & Belfort, M. (2002). Intein-mediated purification of cytotoxic endonuclease I-TevI by insertional inactivation and pH-controllable splicing. Nucleic Acids Research, 30(22), 4864–4871.

    CAS  Article  Google Scholar 

  34. 34.

    Skretas, G., & Wood, D. W. (2005). Regulation of protein activity with small-molecule-controlled inteins. Protein Science, 14(2), 523–532.

    CAS  Article  Google Scholar 

  35. 35.

    Zeidler, M. P., Tan, C., Bellaiche, Y., Cherry, S., Häder, S., Gayko, U., & Perrimon, N. (2004). Temperature-sensitive control of protein activity by conditionally splicing inteins. Nature Biotechnology, 22(7), 871–876.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We thank F. Klebanov for the help with genetic engineering and Dr. S. Kuchin for the help with editing this manuscript.

Funding

This work was supported within the framework of the State Assignment no. 595-00003-19 PR.

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. G. Kozlov.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cheperegin, S.E., Malysheva, A.V., Sannikova, E.P. et al. Expression of Highly Active Bacterial Phospholipase A2 in Yeast Using Intein-Mediated Delayed Protein Autoactivation. Appl Biochem Biotechnol 193, 1351–1364 (2021). https://doi.org/10.1007/s12010-020-03333-7

Download citation

Keywords

  • Phospholipase A2 (PLA2)
  • Streptomyces violaceoruber
  • Yeast
  • Saccharomyces cerevisiae
  • Secretion
  • Intein
  • Autosplicing