Skip to main content
Log in

Screening High CO2-Tolerant Oleaginous Microalgae from Genera Desmodesmus and Scenedesmus

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Microalgae from genus Scenedesmus sensu lato (including Desmodesmus and Scenedesmus) were reported to be particularly suitable candidates for CO2 biomitigation. In this study, 16 strains from Scenedesmus sensu lato were obtained from different climate zones of China and their phylogenetic positions were determined. Seven strains out of the 16 showed high CO2 tolerance and grew much faster under 20% CO2 than air condition. Two representatives from genera Desmodesmus (NMD46) and Scenedesmus (HBX310) respectively were selected due to their higher lipid productivity, and the maximum value of 146 mg L−1 day−1 was achieved in NMD46. Triacylglycerols increased with the rising of CO2 levels from 0.04 to 15% in NMD46, while they changed little in HBX310. High CO2 level decreased the polyunsaturated fatty acid content in NMD46 but increased it in HBX310. NMD46 is more suitable for standardized biodiesel production in view of its lipid and fatty acid composition responses to high CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Peters, G. P., Andrew, R. M., Canadell, J. G., Friedlingstein, P., Jackson, R. B., Korsbakken, J. I., Le Quéré, C., & Peregon, A. (2020). Carbon dioxide emissions continue to grow amidst slowly emerging climate policies. Nature Climate Change, 10(1), 3–6.

    Google Scholar 

  2. Wijffels, R. H., & Barbosa, M. J. (2010). An outlook on microalgal biofuels. Science, 329(5993), 796–799.

    CAS  PubMed  Google Scholar 

  3. Kumar, A., Ergas, S., Yuan, X., Sahu, A., Zhang, Q., Dewulf, J., Malcata, F. X., & van Langenhove, H. (2010). Enhanced CO2 fixation and biofuel production via microalgae: Recent developments and future directions. Trends in Biotechnology, 28(7), 371–380.

    CAS  PubMed  Google Scholar 

  4. Chisti, Y. (2019). Introduction to algal fuels. In A. Pandey, J.-S. Chang, C. R. Soccol, D.-J. Lee, & Y. Chisti (Eds.), Biofuels from algae (2nd ed., pp. 1–31). Elsevier.

  5. Sun, Z., Fang, X., Li, X., & Zhou, Z. (2018). Oleaginous microalgae from dairy farm wastewater for biodiesel production: Isolation, characterization and mass cultivation. Applied Biochemistry and Biotechnology, 184(2), 524–537.

    CAS  PubMed  Google Scholar 

  6. Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14(1), 217–232.

    CAS  Google Scholar 

  7. Patil, L., & Kaliwal, B. (2017). Effect of CO2 concentration on growth and biochemical composition of newly isolated indigenous microalga Scenedesmus bajacalifornicus BBKLP-07. Applied Biochemistry and Biotechnology, 182(1), 335–348.

    CAS  PubMed  Google Scholar 

  8. Satoh, A., Kurano, N., Harayama, S., & Miyachi, S. (2004). Effects of chloramphenicol on photosynthesis, protein profiles and transketolase activity under extremely high CO2 concentration in an extremely-high- CO2-tolerant green microalgae, Chlorococcum littorale. Plant and Cell Physiology, 45(12), 1857–1862.

    CAS  PubMed  Google Scholar 

  9. Chiu, S. Y., Kao, C. Y., Chen, C. H., Kuan, T. C., Ong, S. C., & Lin, C. S. (2008). Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresource Technology, 99(9), 3389–3396.

    CAS  PubMed  Google Scholar 

  10. Chiu, S. Y., Kao, C. Y., Tsai, M. T., Ong, S. C., Chen, C. H., & Lin, C. S. (2009). Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresource Technology, 100(2), 833–838.

    CAS  PubMed  Google Scholar 

  11. de Morais, M. G., & Costa, J. A. V. (2007a). Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of CO2. Energy Conversion and Management, 48(7), 2169–2173.

    Google Scholar 

  12. Yoo, C., Jun, S. Y., Lee, J. Y., Ahn, C. Y., & Oh, H. M. (2010). Selection of microalgae for lipid production under high levels carbon dioxide. Bioresource Technology, 101(1), S71–S74.

    CAS  PubMed  Google Scholar 

  13. Burkhardt, S., Zondervan, I., & Riebesell, U. (1999). Effect of CO2 concentration on C:N:P ratio in marine phytoplankton: A species comparison. Limnology and Oceanography, 44(3), 683–690.

    CAS  Google Scholar 

  14. Hanagata, N., Takeuchi, T., Fukuju, Y., Barnes, D. J., & Karube, I. (1992). Tolerance of microalgae to high CO2 and high temperature. Phytochemistry, 31(10), 3345–3348.

    CAS  Google Scholar 

  15. Solovchenko, A., Gorelova, O., Selyakh, I., Semenova, L., Chivkunova, O., Baulina, O., & Lobakova, E. (2014). Desmodesmus sp. 3Dp86E-1—A novel symbiotic Chlorophyte capable of growth on pure CO2. Marine Biotechnology, 16(5), 495–501.

    CAS  PubMed  Google Scholar 

  16. Hende, S. V. D., Han, V., & Boon, N. (2012). Flue gas compounds and microalgae: (bio-)chemical interactions leading to biotechnological opportunities. Biotechnology Advances, 30(6), 1405–1424.

    Google Scholar 

  17. Xu, J., & Hu, H. (2013). Screening high oleaginous Chlorella strains from different climate zones. Bioresource Technology, 144, 637–643.

    CAS  PubMed  Google Scholar 

  18. Stanier, R. Y., Kunisawar, R., Mandel, M., & Cohen-Bazire, G. (1971). Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriological Reviews, 35(2), 171–205.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hu, H., Li, H., & Xu, X. (2008a). Alternative cold response modes in Chlorella (Chlorophyta, Trebouxiophyceae) from Antarctica. Phycologia, 47(1), 28–34.

    CAS  Google Scholar 

  20. Swofford, D. L. (1998). PAUP* 4.0—Phylogenetic analysis using parsimony (*and other methods). Sunderland: Sinauer Associates.

    Google Scholar 

  21. Collos, Y., Mornet, F., Sciandra, A., Waser, N., Larson, A., & Harrison, P. J. (1999). An optical method for the rapid measurement of micromolar concentrations of nitrate in marine phytoplankton cultures. Journal of Applied Phycology, 11(2), 179–184.

    Google Scholar 

  22. Lichtenthaler, H. K., & Wellburn, A. R. (1983). Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. Biochemical Society Transactions, 11(5), 591–592.

    CAS  Google Scholar 

  23. Bligh, E. G., & Dyer, W. J. (1959). A rapid method of lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911–917.

    CAS  PubMed  Google Scholar 

  24. Reiser, S., & Somerville, C. (1997). Isolation of mutants of Acinetobacter calcoaceticus deficient in wax ester synthesis and complementation of one mutation with a gene encoding a fatty acyl-coenzyme a reductase. Journal of Bacteriology, 179(9), 2969–2975.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Yongmanitchai, W., & Ward, O. P. (1992). Separation of lipid classes from Phaeodactylum tricornutum using silica cartridges. Phytochemistry, 31(10), 3405–3408.

    CAS  Google Scholar 

  26. Lürling, M. (2003). Phenotypic plasticity in the green algae Desmodesmus and Scenedesmus with special reference to the induction of defensive morphology. Annales De Limnologie-International Journal of Limnology, 39(2), 85–101.

    Google Scholar 

  27. Tang, D., Han, W., Li, P. L., Miao, X. L., & Zhong, J. J. (2011). CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresource Technology, 102(3), 3071–3076.

    CAS  PubMed  Google Scholar 

  28. Samorì, G., Samorì, C., Guerrini, F., & Pistocchi, R. (2013). Growth and nitrogen removal capacity of Desmodesmus communis and of a natural microalgae consortium in a batch culture system in view of urban wastewater treatment: Part I. Water Research, 47(2), 791–801.

    PubMed  Google Scholar 

  29. Vidyashankar, S., Deviprasad, K., Chauhan, V. S., Ravishankar, G. A., & Sarada, R. (2013). Selection and evaluation of CO2 tolerant indigenous microalgae Scenedesmus dimorphus for unsaturated fatty acid rich lipid production under different culture conditions. Bioresource Technology, 144, 28–37.

    CAS  PubMed  Google Scholar 

  30. Liu, J., Yuan, C., Hu, G., & Li, F. (2012). Effects of light intensity on the growth and lipid accumulation of microalga Scenedesmus sp. 11-1 under nitrogen limitation. Applied Biochemistry and Biotechnology, 166(8), 2127–2137.

    CAS  PubMed  Google Scholar 

  31. Arora, N., Patel, A., Pruthi, P. A., & Pruthi, V. (2016). Boosting TAG accumulation with improved biodiesel production from novel oleaginous microalgae Scenedesmus sp. IITRIND2 utilizing waste sugarcane bagasse aqueous extract (SBAE). Applied Biochemistry and Biotechnology, 180(1), 109–121.

    CAS  PubMed  Google Scholar 

  32. de Morais, M. G., & Costa, J. A. V. (2007b). Biofixation of CO2 by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. Journal of Biotechnology, 129(3), 439–445.

    PubMed  Google Scholar 

  33. Hu, X., Zhou, J. T., Liu, G. F., & Gui, B. (2016). Selection of microalgae for high CO2 fixation efficiency and lipid accumulation from ten Chlorella strains using municipal wastewater. Journal of Environmental Sciences, 46, 83–91.

    CAS  Google Scholar 

  34. Ho, S. H., Chen, W. M., & Chang, J. S. (2010). Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel production. Bioresource Technology, 101(22), 8725–8730.

    CAS  PubMed  Google Scholar 

  35. Griffiths, M. J., & Harrison, S. T. L. (2009). Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Journal of Applied Phycology, 21(5), 493–507.

    CAS  Google Scholar 

  36. Solovchenko, A., & Goldberg, I. K. (2013). High-CO2 tolerance in microalgae: Possible mechanisms and implications for biotechnology and bioremediation. Biotechnology Letters, 35(11), 1745–1752.

    CAS  PubMed  Google Scholar 

  37. Shiraiwa, Y., Goyal, A., & Tolbert, N. E. (1993). Alkalization of the medium by unicellular green algae during uptake dissolved inorganic carbon. Plant and Cell Physiology, 34(5), 649–657.

    CAS  Google Scholar 

  38. Solovchenko, A., Gorelova, O., Selyakh, I., Pogosyan, S., Baulina, O., Semenova, L., Chivkunova, O., Voronova, E., Konyukhov, I., Scherbakov, P., & Lobakova, E. (2015). A novel CO2-tolerant symbiotic Desmodesmus (Chlorophyceae, Desmodesmaceae): Acclimation to and performance at a high CO2 level. Algal Research, 11, 399–410.

    Google Scholar 

  39. Miyachi, S., Iwasaki, I., & Shiraiwa, Y. (2003). Historical perspective on microalgael and cyanobacterial acclimation to low and extremely high CO2 conditions. Photosynthesis Research, 77(2/3), 139–153.

    CAS  PubMed  Google Scholar 

  40. Baba, M., Suzuki, I., & Shiraiwa, Y. (2011). Proteomic analysis of high-CO2-inducible extracellular proteins in the unicellular green alga, Chlamydomonas reinhardtii. Plant and Cell Physiology, 52(8), 1302–1314.

    CAS  PubMed  Google Scholar 

  41. Yongmanitchai, W., & Ward, O. P. (1991). Growth of and omega-3 fatty acid production by Phaeodactylum tricornutum under different culture conditions. Applied and Environmental Microbiology, 57(2), 419–425.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Toledo-Cervantes, A., Morales, M., Novelo, E., & Revah, S. (2013). Carbon dioxide fixation and lipid storage by Scenedesmus obtusiusculus. Bioresource Technology, 130, 652–658.

    CAS  PubMed  Google Scholar 

  43. Yoon, K., Han, D. X., Li, Y. T., Sommerfeld, M., & Hu, Q. (2012). Phospholipid:diacylglycerol acyltransferase is a multifunctional enzyme involved in membrane lipid turnover and degradation while synthesizing triacylglycerol in the unicellular green microalgae Chlamydomonas reinhardtii. Plant Cell, 24(9), 3708–3724.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Boyle, N. R., Page, M. D., Liu, B., Blaby, I. K., Casero, D., Kropat, J., Cokus, S. J., Hong-Hermesdorf, A., Shaw, J., Karpowicz, S. J., Gallaher, S. D., Johnson, S., Benning, C., Pellegrini, M., Grossman, A., & Merchant, S. S. (2012). Three acyltransferases and nitrogen-responsive regulator are implicated in nitrogen starvation-induced triacylglycerol accumulation in Chlamydomonas. Journal of Biological Chemistry, 287(19), 15811–15825.

    CAS  PubMed  Google Scholar 

  45. Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., & Darzins, A. (2008b). Microalgael triacylglycerols as feedstocks for biofuel production: Perspectives and advances. Plant Journal, 54(4), 621–639.

    CAS  PubMed  Google Scholar 

  46. Fan, J. L., Yan, C. S., Zhang, X. B., & Xu, C. C. (2013). Dual role for phospholipid:diacylglycerol acyltransferase: Enhancing fatty acid synthesis and diverting fatty acids from membrane lipids to triacylglycerol in Arabidopsis leaves. Plant Cell, 25(9), 3506–3518.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Vargas, M. A., Rodríguez, H., Moreno, J., Olivares, H., Del Campo, J. A., Rivas, J., & Guerrero, M. G. (1998). Biochemical composition and fatty acid content of filamentous nitrogen-fixing cyanobacteria. Journal of Phycology, 34(5), 812–817.

    CAS  Google Scholar 

  48. European Standard, E. N. (2004). Automotive fuels-fatty acid methyl esters (FAME) for diesel engines-requirements and test methods. Saint-Denis: AFNOR.

    Google Scholar 

Download references

Funding

This work was supported by the National Key R&D Program of China (Grant No. 2018YFD0901500) and National Natural Science Foundation of China (Grant No. 41976119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanhua Hu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Publication record of Juan Yang

https://sciencedirect.xilesou.top/science/article/pii/S2211926416300431

http://www.plantcell.org/content/26/4/1681.short

https://onlinelibrary.wiley.xilesou.top/doi/abs/10.1111/tpj.13411

https://royalsocietypublishing.org/doi/full/10.1098/rstb.2016.0409

Publication record of Chunye Zhang

https://sciencedirect.xilesou.top/science/article/abs/pii/S1874778713000597

Electronic supplementary material

ESM 1

(PDF 1214 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Zhang, C. & Hu, H. Screening High CO2-Tolerant Oleaginous Microalgae from Genera Desmodesmus and Scenedesmus. Appl Biochem Biotechnol 192, 211–229 (2020). https://doi.org/10.1007/s12010-020-03319-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03319-5

Keywords

Navigation