Skip to main content
Log in

Global Transcriptome Profiling of Enterobacter Strain NRS-1 in Response to Hydrogen Peroxide Stress Treatment

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Microbes are often subjected to oxidative stress in nature that badly affects their growth rate and viability. Although the response of microbes against oxidative stress has been characterized at the chemical, physiological, and molecular levels, the mechanism of gene-regulation network adaptations of bacteria in response to oxidative stress remains largely unknown. In this study, transcriptomic profiling of glyphosate-tolerant Enterobacter strain NRS-1 was analyzed under 9 mM H2O2 stress using RNA-seq and qRT-PCR. The lag period in the growth of NRS-1 was very short compared with wild-type strain under H2O2 treatment. A total of 113 genes are identified as differentially expressed genes (DEGs) under H2O2 that include 38 upregulated and 75 downregulated transcripts. But not any genes regulated by major oxidative regulons, viz., oxyR, soxR, rpoS, perR, ohrR, and σв, have been reported in DEGs, hence potentially reflecting that specific changes have occurred in NRS-1 for adaptation to oxidative stress. Based on the functions of the DEGs, six elements namely formate dehydrogenase, processes associated with iron ions, repair programs, multidrug resistance, antioxidant defense, and energy generation (mqo, sdhC) might have contributed for stress tolerance in NRS-1. These elements are proposed to form a molecular network explaining gene response of NRS-1 to stress, and ensure global cell protection and growth recovery of NRS-1. These findings enrich the view of gene regulation in bacteria in response to H2O2 oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lushchak, V. I. (2011). Adaptive response to oxidative stress: bacteria, fungi, plants and animals. Comparative Biochemistry and Physiology C, 153, 175–190.

    Google Scholar 

  2. Moat, A. G., Foster, J. W., & Spector, M. P. (2003). Microbial physiology. Hoboken: Wiley.

    Google Scholar 

  3. Smith, A. H., Imlay, J. A., & Mackie, R. I. (2003). Increasing the oxidative stress response allows Escherichia coli to overcome inhibitory effects of condensed tannins. Applied and Environmental Microbiology, 69(6), 3406–3411.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Anjum, N. A., Sofo, A., Scopa, A., Roychoudhury, A., Gill, S. S., Iqbal, M., Lukatkin, A. S., Pereira, E., Duarte, A. C., & Ahmad, I. (2015). Lipids and proteins—major targets of oxidative modifications in abiotic stressed plants. Environmental Science and Pollution Research, 22(6), 4099–4121.

    CAS  PubMed  Google Scholar 

  5. Nur, I., Munna, M. S., & Noor, R. (2014). Study of exogenous oxidative stress response in Escherichia coli, Pseudomonas spp., Bacillus spp., and Salmonella spp. Turkish Journal of Biology, 38, 502–509.

    Google Scholar 

  6. Nakamura, K., Kanno, T., Mokudai, T., Iwasawa, A., Niwano, Y., & Kohno, M. (2012). Microbial resistance in relation to catalase activity to oxidative stress induced by photolysis of hydrogen peroxide. Microbiology and Immunology, 56(1), 48–55.

    PubMed  Google Scholar 

  7. Khanduja, V., Kang, G., Rajan, D. P., & Balasubramanian, K. A. (1998). Oxidative stress response in Shigella & nonpathogenic gut bacteria. Indian Journal of Medical Research, 108, 3.

    CAS  PubMed  Google Scholar 

  8. Boles, B. R., & Singh, P. K. (2008). Endogenous oxidative stress produces diversity and adaptability in biofilm communities. Proceedings of National Academy Sciences, 105, 12503–12508.

    CAS  Google Scholar 

  9. Guerzoni, M. E., Lanciotti, R., & Cocconcelli, P. S. (2001). Alteration in cellular fatty acid composition as a response to salt, acid, oxidative and thermal stresses in Lactobacillus helveticus. Microbiology, 147(Pt 8), 2255–2264.

    CAS  PubMed  Google Scholar 

  10. Pérez, A., Poza, M., Aranda, J., Latasa, C., Medrano, F. J., Tomás, M., Romero, A., Lasa, I., & Bou, G. (2012). Effect of the transcriptional activators SoxS, RobA and RamA on expression of the multidrug efflux pump AcrAB-TolC in Enterobacter cloacae. Antimicrobial Agents and Chemotherapy, 56(12), 6256–6266. https://doi.org/10.1128/AAC.01085-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chiang, S. M., & Schellhorn, H. E. (2012). Regulators of oxidative stress response genes in Escherichia coli and their functional conservation in bacteria. Archives of Biochemistry and Biophysics, 525(2), 161–169.

    CAS  PubMed  Google Scholar 

  12. Makthal, N., Rastegari, S., Sanson, M., Ma, Z., Olsen, R. J., Helmann, J. D., Musser, J. M., & Kumaraswami, M. (2013). Crystal structure of peroxide stress regulator from Streptococcus pyogenes provides functional insights into the mechanism of oxidative stress sensing. Journal of Biological Chemistry, 288(25), 18311–18324.

    CAS  PubMed  Google Scholar 

  13. Romero, D. M., de Molina, M. C. R., & Juarez, A. B. (2011). Oxidative stress induced by a commercial glyphosate formulation in a tolerant strain of Chlorella kessleri. Ecotoxicology and Environmental Safety, 74(4), 741–747.

    CAS  PubMed  Google Scholar 

  14. Fei, Y. Y., Bhat, J. A., Zhang, Y. Y., Al Amin, G. M., Gai, J. Y., & Zhao, T. J. (2018). Complex gene response of herbicide-resistant Enterobacter strain NRS-1 under different glyphosate stresses. 3Biotech, 8(10), 422.

    Google Scholar 

  15. Fei, Y. Y., Gai, J. Y., & Zhao, T. J. (2013). Identification of regulated genes conferring resistance to high concentrations of glyphosate in a new strain of Enterobacter. FEMS Microbiology Letters, 349(2), 135–143.

    CAS  PubMed  Google Scholar 

  16. Iseli, C., Jongeneel, C. V., & Bucher, P. (1999). ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Proceedings: International Conference on Intelligent Systems for Molecilar Biology, 99, 138–148.

    Google Scholar 

  17. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., & Wold, B. (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 5(7), 621–628.

    CAS  PubMed  Google Scholar 

  18. Deng, Q., Ramsköld, D., Reinius, B., & Sandberg, R. (2014). Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science, 343(6167), 193–196.

    CAS  Google Scholar 

  19. Untergasser, A., Bijl, G. J., Liu, W., Bisseling, T., Schaart, J. G., & Geurts, R. (2012). One-step Agrobacterium mediated transformation of eight genes essential for rhizobium symbiotic signaling using the novel binary vector system pHUGE. PLoS One, 7(10), e47885.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29, e45.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Tatusov, R. L., Galperin, M. Y., Natale, D. A., & Koonin, E. V. (2000). The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Research, 28(1), 33–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Chang, H., & Tate, M. L. K. (2011). Structure-function relationships in the stem cell’s mechanical world B: emergent anisotropy of the cytoskeleton correlates to volume and shape changing stress exposure. Molecular & Cellular Biomechanics, 8, 297.

    Google Scholar 

  23. Marles-Wright, J., & Lewis, R. J. (2008). Stress responses of bacteria. Current Opinion in Structural Biology, 17, 755–760.

    Google Scholar 

  24. Fung, M. K. L., & Chan, G. C. F. (2017). Drug-induced amino acid deprivation as strategy for cancer therapy. Journal of Hematology & Oncology, 10(1), 144.

    Google Scholar 

  25. Fountain, J. C., Bajaj, P., Pandey, M., Nayak, S. N., Yang, L., Kumar, V., Jayale, A. S., Chitikineni, A., Zhuang, W., Scully, B. T., & Lee, R. D. (2016). Oxidative stress and carbon metabolism influence Aspergillus flavus transcriptome composition and secondary metabolite production. Scientific Reports, 6, 38747.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Lüders, S., Fallet, C., & Franco-Lara, E. (2009). Proteome analysis of the Escherichia coli heat shock response under steady-state conditions. Protein Science, 7, 36.

    Google Scholar 

  27. Salmon, K. A., Hung, S. P., Steffen, N. R., Krupp, R., Baldi, P., Hatfield, G. W., & Gunsalus, R. P. (2005). Global gene expression profiling in Escherichia coli K12 effects of oxygen availability and ArcA. Journal of Biological Chemistry, 280(15), 15084–15096.

    CAS  PubMed  Google Scholar 

  28. Morano, K. A., Grant, C. M., & Moye-Rowley, W. S. (2012). The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics, 190(4), 1157–1195.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Hibbing, M. E., Fuqua, C., Parsek, M. R., & Peterson, S. B. (2010). Bacterial competition: surviving and thriving in the microbial jungle. Nature Reviews Microbiology, 8(1), 15–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Mahamoud, A., Chevalier, J., Davin-Regli, A., & Barbe, J. (2006). Quinoline derivatives as promising inhibitors of antibiotic efflux pump in multidrug resistant Enterobacter aerogenes isolates. Current Drug Targets, 7(7), 843–847.

    CAS  PubMed  Google Scholar 

  31. Srinivasan, T., Kumar, K. R. R., & Kirti, P. B. (2009). Constitutive expression of a trypsin protease inhibitor confers multiple stress tolerance in transgenic tobacco. Plant and Cell Physiology, 50(3), 541–553.

    CAS  PubMed  Google Scholar 

  32. Spector, M. P., & Kenyon, W. J. (2012). Resistance and survival strategies of Salmonella enterica to environmental stresses. Food Research International, 45, 455–481.

    CAS  Google Scholar 

  33. Sun, Y., Li, X., Li, W., Zhao, M., Wang, L., Liu, S., Zeng, J., Liu, Z., & Jia, J. (2012). Proteomic analysis of the function of spot in Helicobacter pylori anti-oxidative stress in vitro and colonization in vivo. Journal of Cellular Biochemistry, 113(11), 3393–3402.

    CAS  PubMed  Google Scholar 

  34. Castro, M. E., Molina, R. C., Díaz, W. A., Pradenas, G. A., & Vásquez, C. C. (2009). Expression of Aeromonas caviae ST pyruvate dehydrogenase complex components mediate tellurite resistance in Escherichia coli. Biochemical and Biophysical Research Communications, 380(1), 148–152.

    CAS  PubMed  Google Scholar 

  35. Mostertz, J., Scharf, C., Hecker, M., & Homuth, G. (2004). Transcriptome and proteome analysis of Bacillus subtilis gene expression in response to superoxide and peroxide stress. Microbiology (Reading England), 150, 497–512.

    CAS  Google Scholar 

  36. Tishkov, V. I., & Popov, V. O. (2006). Protein engineering of formate dehydrogenase. Biomolecular Engineering, 23(2-3), 89–110.

    CAS  PubMed  Google Scholar 

  37. Khil, P. P., & Camerini-Otero, R. D. (2002). Over 1000 genes are involved in the DNA damage response of Escherichia coli. Molecular Microbiology, 44(1), 89–105.

    CAS  PubMed  Google Scholar 

  38. Dressaire, C., Moreira, R. N., Barahona, S., Alves de Matos, A. P., & Arraiano, C. M. (2015). BolA is a transcriptional switch that turns off motility and turns on biofilm development. mBio, 6, e02352–e02314.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Klochendler-Yeivin, A., Picarsky, E., & Yaniv, M. (2006). Increased DNA damage sensitivity and apoptosis in cells lacking the Snf5/Ini1 subunit of the SWI/SNF chromatin remodeling complex. Molecular and Cellular Biology, 26(7), 2661–2674.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Brown, L. T., Sutera Jr., V. A., Zhou, S., Weitzel, C. S., Cheng, Y., & Lovett, S. T. (2015). Connecting replication and repair: YoaA, a helicase-related protein, promotes azidothymidine tolerance through association with Chi, an accessory clamp loader protein. PLoS Genetics, 11, e1005651.

    PubMed  PubMed Central  Google Scholar 

  41. Crowley, D. J., Boubriak, I., Berquist, B. R., Clark, M., Richard, E., Sullivan, L., DasSarma, S., & McCready, S. (2006). The uvrA, uvrB and uvrC genes are required for repair of ultraviolet light induced DNA photoproducts in Halobacterium sp. NRC-1. Saline Systems, 2, 11.

    PubMed  PubMed Central  Google Scholar 

  42. Beisswenger, P. J., Howell, S. K., Smith, K., & Szwergold, B. S. (2003). Glyceraldehyde-3-phosphate dehydrogenase activity as an independent modifier of methylglyoxal levels in diabetes. Biochimica et Biophysica Acta Molecular Basis of Disease, 1637, 98–106.

    CAS  Google Scholar 

  43. Zhou, Z., Fang, Y., Li, Q., Yin, H., Qin, W., Liang, Y., Li, Q., Li, N., Liu, X., Qiu, G., & Liu, X. (2012). Global transcriptional analysis of stress-response strategies in Acidithiobacillus ferrooxidans ATCC 23270 exposed to organic extractant-Lix984n. World Journal of Microbiology and Biotechnology, 28(3), 1045–1055.

    CAS  PubMed  Google Scholar 

  44. Lledó, B., Martınez-Espinosa, R. M., Marhuenda-Egea, F. C., & Bonete, M. J. (2004). Respiratory nitrate reductase from haloarchaeon Haloferax mediterranei: biochemical and genetic analysis. Biochimica et Biophysica Acta-General Subjects, 1674, 50–59.

    Google Scholar 

  45. Hood, M. I., & Skaar, E. P. (2012). Nutritional immunity: transition metals at the pathogen-host interface. Nature Reviews Microbiology, 10. https://doi.org/10.1038/nrmicro2836.

  46. Bitoun, J. P., Wu, G., & Ding, H. (2008). Escherichia coli FtnA acts as an iron buffer for re-assembly of iron-sulfur clusters in response to hydrogen peroxide stress. Biometals, 21(6), 693–703.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Koch, D., Chan, A. C. K., Murphy, M. E. P., Lilie, H., Grass, G., & Nies, D. H. (2011). Characterization of a dipartite iron uptake system from uropathogenic Escherichia coli strain F11. Journal of Biological Chemistry, 286(28), 25317–25330.

    CAS  PubMed  Google Scholar 

  48. Hantash, F. M., & Earhart, C. F. (2000). Membrane association of the Escherichia coli enterobactin synthase proteins EntB/G, EntE, and EntF. Journal of Bacteriology, 182(6), 1768–1773.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Garcia, E. C., Brumbaugh, A. R., & Mobley, H. L. T. (2011). Redundancy and specificity of Escherichia coli iron acquisition systems during urinary tract infection. Infection and Immunity, 79(3), 1225–1235.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Noinaj, N., Guillier, M., Barnard, T. J., & Buchanan, S. K. (2010). TonB-dependent transporters: regulation, structure, and function. Annual Review of Microbiology, 64, 43–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ayala-Castro, C., Saini, A., & Outten, F. W. (2008). Fe-S cluster assembly pathways in bacteria. Microbiology and Molecular Biology Reviews: MMBR, 72, 110–125.

    CAS  PubMed  Google Scholar 

  52. McHugh, J. P., Rodrıguez-Quinones, F., Abdul-Tehrani, H., Svistunenko, D. A., Poole, R. K., Cooper, C. E., & Andrews, S. C. (2003). Global iron-dependent gene regulation in Escherichia coli. Journal of Biological Chemistry, 278(32), 29478–29486.

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the MOA Special Project for Crop Breeding (2016ZX08004001, the Natural Science Foundation of China (31571691), the Fundamental Research Funds for the Central Universities (KYT201801), Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT_17R55), and the Jiangsu JCIC-MCP program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuan-Jie Zhao.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

For author Javaid Akhter Bhat institutional email address is not available so we provide his publication link here as https://www.researchgate.net/profile/Javaid_Bhat6

Electronic supplementary material

ESM 1

(XLSX 11 kb).

ESM 2

(XLSX 16 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fei, YY., Bhat, J.A., Gai, JY. et al. Global Transcriptome Profiling of Enterobacter Strain NRS-1 in Response to Hydrogen Peroxide Stress Treatment. Appl Biochem Biotechnol 191, 1638–1652 (2020). https://doi.org/10.1007/s12010-020-03313-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03313-x

Keywords

Navigation