Skip to main content
Log in

Exogenous Abscisic Acid Supplementation at Early Stationary Growth Phase Triggers Changes in the Regulation of Fatty Acid Biosynthesis in Chlorella vulgaris UMT-M1

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Abscisic acid (ABA) has been known to exist in a microalgal system and serves as one of the chemical stimuli in various biological pathways. Nonetheless, the involvement of ABA in fatty acid biosynthesis, particularly at the transcription level in microalgae is poorly understood. The objective of this study was to determine the effects of exogenous ABA on growth, total oil content, fatty acid composition, and the expression level of beta ketoacyl-ACP synthase I (KAS I) and omega-3 fatty acid desaturase (ω-3 FAD) genes in Chlorella vulgaris UMT-M1. ABA was applied to early stationary C. vulgaris cultures at concentrations of 0, 10, 20, and 80 μM for 48 h. The results showed that ABA significantly increased biomass production and total oil content. The increment of palmitic (C16:0) and stearic (C18:0) acids was coupled by decrement in linoleic (C18:2) and α-linolenic (C18:3n3) acids. Both KAS I and ω-3 FAD gene expression were downregulated, which was negatively correlated to saturated fatty acid (SFAs), but positively correlated to polyunsaturated fatty acid (PUFA) accumulations. Further analysis of both KAS I and ω-3 FAD promoters revealed the presence of multiple ABA-responsive elements (ABREs) in addition to other phytohormone-responsive elements. However, the role of these phytohormone-responsive elements in regulating KAS I and ω-3 FAD gene expression still remains elusive. This revelation might suggest that phytohormone-responsive gene regulation in C. vulgaris and microalgae as a whole might diverge from higher plants which deserve further scientific research to elucidate its functional roles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lu, Y., & Xu, J. (2015). Phytohormones in microalgae: a new opportunity for microalgal biotechnology? Trends in Plant Science, 20(5), 273–282.

    Article  CAS  PubMed  Google Scholar 

  2. Contreras-Pool, P. Y., Peraza-Echeverria, S., Ku-Gonzalez, A. F., & Herrera-Valencia, V. A. (2016). The phytohormone abscisic acid increases triacylglycerol content in the green microalga Chlorella saccharophila (Chlorophyta). Algae, 31(3), 267–276.

    Article  CAS  Google Scholar 

  3. Du, H., Ahmed, F., Lin, B., Li, Z., Huang, Y., Sun, G., Ding, H., Wang, C., Meng, C., & Gao, Z. (2017). The effects of plant growth regulators on cell growth, protein, carotenoid, PUFAs and lipid production of Chlorella pyrenoidosa ZF strain. Energies, 10(1), 1696.

    Article  CAS  Google Scholar 

  4. Wu, G., Gao, Z., Du, H., & Meng, C. (2018). The effects of abscisic acid, salicylic acid and jasmonic acid on lipid accumulation in two freshwater Chlorella strains. The Journal of General and Applied Microbiology, 64(1), 42–49.

    Article  CAS  PubMed  Google Scholar 

  5. Liu, T., Liu, F., Wang, C., Wang, Z., & Li, Y. (2017). The boosted biomass and lipid accumulation in Chlorella vulgaris by supplementation of synthetic phytohromone analogs. Bioresource Technology, 232, 44–52.

    Article  CAS  PubMed  Google Scholar 

  6. Jusoh, M., Loh, S. H., Chuah, T. S., Aziz, A., & Cha, T. S. (2015). Elucidating the role of jasmonic acid in oil accumulation, fatty acid composition and gene expression in Chlorella vulgaris (Trebouxiophyceae) during early stationary growth phase. Algal Research, 9, 14–20.

    Article  Google Scholar 

  7. Kozlova, T. A., Hardy, B. P., Krishna, P., & Levin, D. B. (2017). Effect of phytohormones on growth and accumulation of pigments and fatty acids in the microalgae Scenedesmus quadricauda. Algal Research, 27, 325–334.

    Article  Google Scholar 

  8. Kaleem, F., Shabir, G., Aslam, K., Rasul, S., Manzoor, H., Shah, S. M., & Khan, A. R. (2018). An overview of the genetics of plant response to salt stress: present status and the way forward. Applied Biochemistry and Biotechnology, 186(2), 306–334.

    Article  CAS  PubMed  Google Scholar 

  9. Sulochana, S. B., & Arumugam, M. (2016). Influence of abscisic acid on growth, biomass and lipid yield of Scenedesmus quadricauda under nitrogen starved condition. Bioresource Technology, 213, 198–203.

    Article  CAS  PubMed  Google Scholar 

  10. Ohlrogge, J. B., & Browse, J. (1995). Lipid biosynthesis. Plant Cell, 7(7), 957–970.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Salas, J. J., Sánchez, J., Ramli, U. S., Manaf, A. M., Williams, M., & Harwood, J. L. (2000). Biochemistry of lipid metabolism in olive and other oil fruits. Progress in Lipid Research, 39(2), 151–180.

    Article  CAS  PubMed  Google Scholar 

  12. Liu, J., Huang, J., Sun, Z., Zhong, Y., Jiang, Y., & Chen, F. (2011). Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: assessment of algal oils for biodiesel production. Bioresource Technology, 102(1), 106–110.

    Article  CAS  PubMed  Google Scholar 

  13. Jusoh, M., Loh, S. H., Chuah, T. S., Aziz, A., & Cha, T. S. (2015). Indole-3-acetic acid (IAA) induced changes in oil content, fatty acid profiles and expression of four fatty acid biosynthetic genes in Chlorella vulgaris at early stationary growth phase. Phytochemistry, 111, 65–71.

    Article  CAS  PubMed  Google Scholar 

  14. Cha, T. S., Chen, J. W., Goh, E. G., Aziz, A., & Loh, S. H. (2011). Differential regulation of fatty acid biosynthesis in two Chlorella species in response to nitrate treatments and the potential of binary blending microalgae oils for biodiesel application. Bioresource Technology, 102(22), 10633–10640.

    Article  CAS  PubMed  Google Scholar 

  15. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25(4), 402–408.

    Article  CAS  PubMed  Google Scholar 

  16. Lin, J., Jin, Y., Wang, J., & Tang, K. (2008). Cloning and analysis of the 5′ and 3′ flanking regions of the Crinum asiaticum agglutinin gene by genomic walking. African Journal of Biotechnology, 7, 3582–3586.

    CAS  Google Scholar 

  17. Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., Rouzé, P., & Rombauts, S. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequence. Nucleic Acids Research, 30(1), 325–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huang, G. T., Ma, S. L., Bai, L. P., Zhang, L., Ma, H., Jia, P., Liu, J., Zhong, M., & Guo, Z. F. (2012). Signal transduction during cold, salt, and drought stresses in plants. Molecular Biology Reports, 39(2), 969–987.

    Article  PubMed  CAS  Google Scholar 

  19. Kobayashi, M., Hirai, N., Kurimura, Y., Ohigashi, H., & Tsuji, Y. (1997). Abscisic acid-dependent algal morphogenesis in the unicellular green alga Haematococcus pluvialis. Plant Growth Regulator, 22(2), 79–85.

    Article  CAS  Google Scholar 

  20. Lu, Y., Tarkowská, D., Turečková, V., Luo, T., Xin, Y., Li, J., Wang, Q., Jiao, N., Strnad, M., & Xu, J. (2014). Antagonistic roles of abscisic acid and cytokinin during response to nitrogen depletion in oleaginous microalga Nannochloropsis oceanica expand the evolutionary breadth of phytohormone function. The Plant Journal, 80(1), 52–68.

    Article  CAS  PubMed  Google Scholar 

  21. Park, W. K., Yoo, G., Moon, M., Kim, C. W., Choi, Y. E., & Yang, J. W. (2013). Phytohormone supplementation significantly increases growth of Chlamydomonas reinhardtii cultivated for biodiesel production. Applied Biochemistry and Biotechnology, 171(5), 1128–1142.

    Article  CAS  PubMed  Google Scholar 

  22. Nguyen, Q. T., Kisiala, A., Andreas, P., Neil Emery, R. J., & Narine, S. (2016). Soybean seed development: fatty acid and phytohormone metabolism and their interactions. Current Genomics, 17(3), 241–260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ra, C. H., Kang, C. H., Jung, J. H., Jeong, G. T., & Kim, S. K. (2016). Effects of light-emitting diodes (LEDs) on the accumulation of lipid content using a two-phase culture process with three microalgae. Bioresource Technology, 212, 254–261.

    Article  CAS  PubMed  Google Scholar 

  24. Nagappan, S., Devendran, S., Tsai, P. C., & Dahms, H. U. (2019). Potential of two-stage cultivationin microalgae biofuel production. Fuel, 252, 339–349.

    Article  CAS  Google Scholar 

  25. Feng, Y., Li, C., & Zhang, D. (2011). Lipid production of Chlorella vulgaris cultured in artificial wastewater medium. Bioresource Technology, 102(1), 101–105.

    Article  CAS  PubMed  Google Scholar 

  26. Lin, B., Ahmed, F., Du, H., Li, Z., Yan, Y., Huang, Y., Cui, M., Yin, Y., Li, B., Wang, M., Meng, C., & Gao, Z. (2018). Plant growth regulators promote lipid and carotenoid accumulation in Chlorella vulgaris. Journal of Applied Phycology, 30(3), 1549–1561.

    Article  CAS  Google Scholar 

  27. Pacheco-Moises, F., Valencia-Turcotte, L., Altuzar-Martinez, M., & Rodriguez-Sotres, R. (1997). Regulation of acyltransferase activity in immature maize embryos by abscisic acid and the osmotic environment. Plant Physiology, 114(3), 1095–1101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jusoh, M., Loh, S. H., Aziz, A., & Cha, T. S. (2019). Gibberellin promotes cell growth and induces changes in fatty acid biosynthesis and upregulates fatty acid biosynthesis genes in Chlorella vulgaris UMT-M1. Applied Biochemistry and Biotechnology, 188(2), 450–459.

    Article  CAS  PubMed  Google Scholar 

  29. Knothe, G., Matheaus, A. C., & Ryan III, T. W. (2003). Cetane number of branched and straight-chain fatty esters determined in an ignition quality tester. Fuel, 82, 971–975.

    Article  CAS  Google Scholar 

  30. Ramos, M. J., Fernández, C. M., Casas, A., Rodríguez, L., & Pérez, A. (2009). Influence of fatty acid composition of raw materials on biodiesel properties. Bioresource Technology, 100(1), 261–268.

    Article  CAS  PubMed  Google Scholar 

  31. Kong, Y., Chen, S., Yang, Y., & An, C. (2013). ABA-insensitive (ABI) 4 and ABI5 synergistically regulate DGAT1 expression in Arabidopsis seedlings under stress. FEBS Letters, 587(18), 3076–3082.

    Article  CAS  PubMed  Google Scholar 

  32. Jako, C., Kumar, A., Wei, Y., Zou, J., Barton, D. L., Giblin, E. M., Covello, P. S., & Taylor, D. C. (2001). Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight. Plant Physiology, 126(2), 861–874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Beacham, T. A., & Ali, S. T. (2016). Growth dependent silencing and resetting of DGA1 transgene in Nannochloropsis salina. Algal Research, 14, 65–71.

    Article  Google Scholar 

  34. Liang, M. H., & Jiang, J. G. (2013). Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Progress in Lipid Research, 52(4), 395–408.

    Article  CAS  PubMed  Google Scholar 

  35. Lei, A. P., Chen, H., Shen, G. M., Hu, Z. L., Chen, L., & Wang, J. X. (2012). Expression of fatty acid synthesis genes and fatty acid accumulation in Haematococcus pluvialis under different stressors. Biotechnology for Biofuels, 5, 18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Norashikin, M. N., Loh, S. H., Aziz, A., & Cha, T. S. (2018). Metabolic engineering of fatty acid biosynthesis in Chlorella vulgaris using an endogenous omega-3 fatty acid desaturase gene with its promoter. Algal Research, 31, 262–275.

    Article  Google Scholar 

  37. Holbrook, L. A., Magus, J. R., & Taylor, D. C. (1992). Abscisic acid induction of elongase activity, biosynthesis and accumulation of very long chain monounsaturated fatty acids and oil body proteins in microspore-derived embryos of Brassica napus L. cv Reston. Plant Science, 84(1), 99–115.

    Article  CAS  Google Scholar 

  38. Kunst, L., Taylor, D. C., & Underhill, E. W. (1992). Fatty acid elongation in developing seeds of Arabidopsis thaliana affecting wax biosynthesis in Arabidopsis thaliana. Plant Physiology and Biochemistry, 30(4), 425–434.

    CAS  Google Scholar 

  39. Henry, G. E., Momin, R. A., Nair, M. G., & Dewitt, D. L. (2002). Antioxidant and cyclooxygenase activities of fatty acids found in food. Journal of Agricultural and Food Chemistry, 50(8), 2231–2234.

    Article  CAS  PubMed  Google Scholar 

  40. Lee, J. H., Kim, Y. G., Park, J. G., & Lee, J. (2017). Supercritical fluid extracts of Moringa oleifera and their unsaturated fatty acid components inhibit biofilm formation by Staphylococcus aureus. Food Control, 80, 74–82.

    Article  CAS  Google Scholar 

  41. Fujita, Y., Fujita, M., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2011). ABA-mediated transcriptional regulation in response to osmotic stress in plants. Journal of Plant Research, 124(4), 509–525.

    Article  CAS  PubMed  Google Scholar 

  42. Kim, J. A., Bhatnagar, N., Kwon, S. J., Min, M. K., Moon, S. J., Yoon, I. S., Kwon, T. R., Kim, S. T., & Kim, B. G. (2018). Transcriptome analisis of ABA/JA-dual responsive genes in rice shoot and root. Current Genomics, 19(1), 4–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Verma, V., Ravindran, P., & Kumar, P. P. (2016). Plant hormone-mediated regulation of stress responses. BMC Plant Biology, 16, 86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Gómez, J. L., Riaño-Pachón, D. M., Dreyer, I., Mayer, J. E., & Mueller-Roeber, B. (2007). Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice. BMC Genomics, 8, 260.

    Article  CAS  Google Scholar 

  45. Nakashima, K., Fujita, Y., Katsura, K., Maruyama, K., Narusaka, Y., Seki, M., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2006). Transcriptional regulation of ABI3- and ABA-responsive genes including RD29B and RD29A in seeds, germinating embryos, and seedlings of Arabidopsis. Plant Molecular Biology, 60(1), 51–68.

    Article  CAS  PubMed  Google Scholar 

  46. Kashyap, P., & Deswal, R. (2019). Two ICE isoforms showing differential transcriptional regulation by cold and hormones participate in Brassica juncea cold stress signaling. Gene, 695, 32–41.

    Article  CAS  PubMed  Google Scholar 

  47. Song, N., Xu, Z., Wang, J., Qin, Q., Jiang, H., Si, W., & Li, X. (2018). Genome-wide analysis of maize CONSTANS-LIKE gene family and expression profiling under light/dark and abscisic acid treatment. Gene, 673, 1–11.

    Article  CAS  PubMed  Google Scholar 

  48. Xiao, G., Zhang, Z. Q., Yin, C. F., Liu, R. Y., Wu, X. M., Tan, T. L., Chen, S. Y., Lu, C. M., & Guan, C. Y. (2014). Characterization of the promoter and 5’-UTR intron of oleic acid desaturase (FAD2) gene in Brassica napus. Gene, 545(1), 45–55.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang, W., Ruan, J., David Ho, T., You, Y., Yu, T., & Quatrano, R. S. (2005). cis-Regulatory element based targeted gene finding: genome-wide identification of abscisic acid- and abiotic stress-responsive genes in Arabidopsis thaliana. Bioinformatics, 21(14), 3074–3081.

    Article  CAS  PubMed  Google Scholar 

  50. Kim, J. S., Mizoi, J., Yoshida, T., Fujita, Y., Nakajima, J., Ohori, T., Tokada, D., Nakashima, K., Hitayama, T., Shinozaki, K., & Kazuko, Y. S. (2011). An ABRE promoter seqeunce is involved in osmotic stress-responsive expression of the DREB2A gene, which encodes a transcription factor regulating drought-inducible gene in Arabidopsis. Plant and Cell Physiology, 52(12), 2136–2146.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research project was funded under a Science Fund (Project No: 02-01-12-SF0089) from the Ministry of Science, Technology and Innovation (MOSTI), Malaysia.

Author information

Authors and Affiliations

Authors

Contributions

TSC, RN, MNN, SHL, and AA conceived and designed the research; RN and MNN conducted the experiments. TSC, SHL, and AA analyzed and interpreted the data. TSC and AA wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Thye San Cha.

Ethics declarations

Consent for Publication

All authors approved the manuscript.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norlina, R., Norashikin, M.N., Loh, S.H. et al. Exogenous Abscisic Acid Supplementation at Early Stationary Growth Phase Triggers Changes in the Regulation of Fatty Acid Biosynthesis in Chlorella vulgaris UMT-M1. Appl Biochem Biotechnol 191, 1653–1669 (2020). https://doi.org/10.1007/s12010-020-03312-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03312-y

Keywords

Navigation