Skip to main content
Log in

Genome-Scale Characterization of Fungal Phytases and a Comparative Study Between Beta-Propeller Phytases and Histidine Acid Phosphatases

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This work intended to prospect new phytase-producing organisms. In silico genomic analyses allowed the selection of twelve potential phytase-producing fungi. Based on gene sequence, it was possible to identify four well-defined groups of phytate-degrading enzymes: esterase-like, β-propeller phytases (βPP), phosphoglycerate mutase-like, and phytases of the histidine acid phosphatases (HAP) family. Analysis of the predicted genes encoding phytases belonging to the HAP family and βPP phytases and in silico characterization of these enzymes indicated divergence among the catalytic activities. Predicted fungal βPP phytases exhibited higher molecular mass (around 77 kDa) probably due to the epidermal growth factor-like domain. Twelve sequences of phytases contained signal peptides, of which seven were classified as HAP and five as βPP phytases, while ten sequences were predicted as phytases secreted by non-classical pathways. These fungi were grown in liquid or semi-solid medium, and the fungal enzymatic extracts were evaluated for their ability to hydrolyze sodium phytate at 50 °C and pH ranging from 2.0 to 9.0. Seven fungi were identified as phytase producers based on phosphate release under enzyme assay conditions. Results obtained from in silico analyses combining experimental enzymatic activities suggest that some selected fungi could secrete βPP phytases and HAP phytases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Singh, B., Kunze, G., & Satyanarayana, T. (2011). Biotechnology and Molecular Biology Reviews, 6(3), 69–87.

    CAS  Google Scholar 

  2. Raboy, V. (2003). Phytochemistry, 64, 1033–1043.

    CAS  PubMed  Google Scholar 

  3. Vohra, A., & Satyanarayana, T. (2003). Critical Reviews in Biotechnology, 23, 29–60.

    CAS  PubMed  Google Scholar 

  4. Zhao, Q., Liu, H., Zhang, Y., & Zhang, Y. (2010). Engineering of protease-resistant phytase from Penicillium sp.: high thermal stability, low optimal temperature and pH. Journal of Bioscience and Bioengineering, 110(6), 638–645.

    CAS  PubMed  Google Scholar 

  5. Singh, B. (2013). Microbiology and Biotechnology, 40(8), 891–899.

    Google Scholar 

  6. Vats, P., Bhattacharyya, M. S., & Banerjee, U. C. (2005). Critical Reviews in Environmental Science and Technology, 35(5), 469–486.

    CAS  Google Scholar 

  7. Nelson, T.S. (1976). The hydrolysis of phytate phosphorus by chicks and laying hens. Poultry Science. 55(6), 2262–2264.

  8. Belho, K., Nongpiur, S. R., & Ambasht, P. K. (2016). Journal of Plant Biochemistry and Biotechnology, 25, 327–330. 32.

    CAS  Google Scholar 

  9. Muslim, S. N., Mohammed Ali, A. N., Al-Kadmy, I. M. S., Khazaal, S. S., Ibrahim, S. A., Al-Saryi, N. A., Al-Saadi, L. G., Muslim, S. N., Salman, B. K., & Aziz, S. N. (2018). Screening, nutritional optimization and purification for phytase produced by Enterobacter aerogenes and its role in enhancement of hydrocarbons degradation and biofilm inhibition. Microbial Pathogenesis, 115, 159–167.

    CAS  PubMed  Google Scholar 

  10. Neira-Vielma A. A., Aguilar C. N., Ilyina A., Contreras-Esquivel J. C., Carneiro da-Cunha M. G., Michelena-Álvarez G., & Martínez-Hernández J. L (2018). Biotechnol Reports. Amsterdam, Netherlands. 17, p.49–54.

  11. Sarrouh, B., Santos, T. M., Miyoshi, A., Dias, R., Azevedo, V. (2012). Up-to-date insight on industrial enzymes applications and global market. Journal of Bioprocessing & Biotechniques. S4:002. https://doi.org/10.4172/2155-9821.S4-002.

  12. Ushasree, M. V., Jaiswal, A. K., Krishna, S., & Pandey, A. (2019). Bioresource Technology, 278, 400–407.

    Google Scholar 

  13. Cowieson, A. J., Wilcock, P., & Bedford, M. R. (2011). World's Poultry Science Journal, 67, 225–236.

    Google Scholar 

  14. Shanmugam, G. (2018). International Journal of Current Microbiology and Applied Sciences, 7(3), 1006–1013.

    Google Scholar 

  15. Bhavsar, K., Buddhiwant, P., Soni, S. K., Depan, D., Sarkar, S., & Khire, J. M. (2013). Process Biochemistry, 48, 1618–1625.

    CAS  Google Scholar 

  16. Awad, G. E., Helal, M. M., Danial, E. N., & Esawy, M. A. (2014). Saudi Journal of Biological Sciences, 21, 81–88.

    CAS  PubMed  Google Scholar 

  17. Bujna, E., Rezessy-Szabó, J. M., Nguyen, D. V., & Nguyen, D. Q. (2016). Mycosphere, 7(10), 1576–1587.

    Google Scholar 

  18. Shahryari, Z., Fazaelipoor, M. H., Setoodeh, P., Nair, R. B., Mohammad, J., Taherzadeh, M. J., & Ghasemi, Y. (2018). International Journal of Recycling of Organic Waste in Agriculture, 7, 345–355.

    Google Scholar 

  19. Song, H. Y., Sheikha, A. F., & Hu, D. M. (2019). Trends in Food Science and Technology, 86, 553–562.

    CAS  Google Scholar 

  20. Lim, D., Golovan, S., Forsberg, C. W., & Jia, Z. (2000). Crystal structures of Escherichia coli phytase and its complex with phytate. Nature Structural Biology, 7(2), 108–113.

    CAS  PubMed  Google Scholar 

  21. Oh, B. C., Kim, M. H., Yun, B. S., Choi, W. C., Park, S. C., Bae, S. C., & Oh, T. K. (2006). Biochem., 45, 9531–9539.

    CAS  Google Scholar 

  22. Ha, N. C., Oh, B. C., Shin, S., Kim, H. J., Oh, T. K., Kim, Y. O., Choi, K. Y., & Oh, B. H. (2000). Nature Structural & Molecular Biology, 7, 147–153.

    CAS  Google Scholar 

  23. Bhadouria, J., Singh, A. P., Mehra, P., Verma, L., Srivastawa, R., Parida, S. K., & Giri, J. (2017). Scientific Reports, 7, 11012.

    PubMed  PubMed Central  Google Scholar 

  24. Antonyuk, S. V., Olczak, M., Olczak, T., Ciuraszkiewicz, J., & Strange, R. W. (2014). Biology and Medicine, 1, 101–109.

    CAS  Google Scholar 

  25. Puhl, A. A., Greiner, R., & Selinger, L. B. (2008). The International Journal of Biochemistry & Cell Biology, 40, 2053–2064.

    CAS  Google Scholar 

  26. Kimati, H., Amorim, L., Rezende, J.A.M., Bergamin Filho, A., Camargo. L.E.A. (2005). ed. Manual de Fitopatologia. Volume 2. 4ª Ed. Ed. Agronômica Ceres Ltda. SP. p.666.

  27. Stanke, M., & Morgenstern, B. (2005). AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Research, 33(Web Server issue), W465–W467.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410.

    CAS  PubMed  Google Scholar 

  29. Potter, S. C., Luciani, A., Eddy, S. R., Park, Y., Lopez, R., & Finn, R. D. (2018). Nucleic Acids Research Web Server Issue, 46, W200–W204.

    CAS  Google Scholar 

  30. Wilkins, M. R., Gasteiger, E., Bairoch, A., Sanchez, J. C., Williams, K. L., Appel, R. D., & Hochstrasser, D. F. (1999). Methods in Molecular Biology, 112, 531–552.

    CAS  PubMed  Google Scholar 

  31. Gupta, R., Jung, E., & Brunak, S. (2004). Prediction of N-glycosylation sites in human proteins. http://www.cbs.dtu.dk/services/NetNGlyc/.

  32. Stultz, C. M., White, J. M., & Smith, T. F. (1993). Structural analysis based on state-space modeling. Protein Science, 2(3), 305–314.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Petersen, T. N., Brunak, S., Von Heijne, G., & Nielsen, H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods., 8(10), 785–786.

    CAS  PubMed  Google Scholar 

  34. Krogh, A., Larsson, B., Von Heijne, G., & Sonnhammer, E. L. L. (2001). Journal of Molecular Biology, 305(3), 567–580.

    CAS  PubMed  Google Scholar 

  35. McWilliam, H., Li, W., Uludag, M., Squizzato, S., Ym, P., Buso, N., Cowley, A., & Lopez, R. (2013). Analysis Tool Web Services from the EMBL-EBI. Nucleic Acids Research, 41(Web Server issue), W597–W600.

    PubMed  PubMed Central  Google Scholar 

  36. Oakley, A. J. (2010). Biochemical and Biophysical Research Communications, 397(4), 745–749.

    CAS  PubMed  Google Scholar 

  37. Ragon, M., Hoh, F., Aumelas, A., Chiche, L., Moulin, G., & Boze, H. (2009). Acta Crystallographica Section F, 65, 321–326.

    CAS  Google Scholar 

  38. Zeng, Y. F., Ko, T. P., Lai, H. L., Cheng, Y. S., Wu, T. H., Ma, Y., Chen, C. C., Yang, C. S., Cheng, K. J., Huang, C. H., Guo, R. T., & Liu, J. R. (2011). Journal of Molecular Biology, 409, 214–224.

    CAS  PubMed  Google Scholar 

  39. Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2), 111–120.

    CAS  PubMed  Google Scholar 

  40. Kruskal J., & Wish M. (1978). Multidimensional Scaling. Sage Publications, Beverly Hills, California. https://doi.org/10.4135/9781412985130.

  41. Young F, Hamer R. (1987). Lawrence Erlbaum Associates, Hillsdale.

  42. Team R. C. (2013). A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

  43. Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M., & Barton, G. J. (2009). Bioinformatics, 25, 1189–1191.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Gunashree, B., & Venkateswaran, G. (2008). Journal of Industrial Microbiology & Biotechnology, 35, 1587–1596.

    CAS  Google Scholar 

  45. Monteiro, P. S., De Melo, R. R., Tavares, M. P., Falkoski, D. L., Guimarães, V. M., Pereira, O. L., & Rezende, S. T. (2012). Revista Brasileira de Agrociên, 18(2-4), 117–132.

    Google Scholar 

  46. Heinonen, J. K., & Lahti, R. J. (1981). A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase. Analytical Biochemistry, 113(2), 313–317.

    CAS  PubMed  Google Scholar 

  47. Taussky, H. H., & Skorr, E. (1953). The Journal of Biological Chemistry, 202, 675–685.

    CAS  PubMed  Google Scholar 

  48. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    CAS  PubMed  Google Scholar 

  49. Rigden, D. J. (2008). Biochemical Journal, 409, 333–348.

    CAS  Google Scholar 

  50. Sacco, F., Perfetto, L., Castagnoli, L., & Cesareni, G. (2012). Letras FEBS, 586(17), 2732–2739.

    CAS  Google Scholar 

  51. Singh, B., Sharma, K. K., Amit Kumari, A., Anil Kumar, A., & Gakhar, S. K. (2018). International Journal of Biological Macromolecules, 115, 501–508.

    CAS  PubMed  Google Scholar 

  52. Zhang, H., Yang, L., Ding, W., & Ma, Y. (2018). The Journal of Physical Chemistry B, 122(30), 7530–7538.

    CAS  PubMed  Google Scholar 

  53. Fan, C. M., Wang, Y. H., Fu, C. Y., & Zheng, Y. F. (2013). African Journal of Biotechnology, 12, 1138–1147.

    CAS  Google Scholar 

  54. Balaban, N. P., Suleimanovaa, A. D., Shakirova, E. V., & Sharipovaa, M. R. (2018). Microbiology, 87(6), 745–756.

    CAS  Google Scholar 

  55. Balaban, N. P., Suleimanova, A. D., Valeeva, L. R., Shakirov, E. V., & Sharipova, M. R. (2016). Biochemistry, 81(8), 785–793.

    CAS  PubMed  Google Scholar 

  56. Kumar, V., Yadav, A. N., Verma, P., Sangwan, P., Saxena, A., Kumar, K., & Singh, B. (2017). International Journal of Biological Macromolecules, 98, 595–609.

    CAS  PubMed  Google Scholar 

  57. Sanangelantoni, A. M., Malatrasi, M., Trivelloni, E., Visioli, G., & Agrimonti, C. (2018). Applied Microbiology and Biotechnology, 102, 8351–8358. https://doi.org/10.1007/s00253-018-9248-2.

    Article  CAS  PubMed  Google Scholar 

  58. Puppala, K. R., Naik, T., Shaik, A., Dastager, S., Kumar, V. R., & Dharne, M. (2018). Biocatalysis and Agricultural Biotechnology, 13, 225–235.

    Google Scholar 

  59. Azeke, M. A., Greiner, R., & Jany, K. D. (2010). Journal of Food Biochemistry, 35(1), 213–237.

    Google Scholar 

  60. Nickel, W., & Seedorf, M. (2008). Annual Review of Cell and Developmental Biology, 24, 287–308. https://doi.org/10.1146/annurev.cellbio.24.110707.175320.

    Article  CAS  PubMed  Google Scholar 

  61. Niu, C., Luo, H., Shi, P., Huang, H., Wang, Y., Yang, P., & Yao, B. (2015). Applied and Environmental Microbiology, 82, 1004–1014.

    PubMed  Google Scholar 

  62. Wang, X. Y., Meng, F. G., & Zhou, H. M. (2004). Biochemistry and Cell Biology, 82, 329–334.

    CAS  PubMed  Google Scholar 

  63. Kumar, V., Singh, P., Jorquera, M. A., Sangwan, P., Kumar, P., Verma, A. K., & Agrawal, S. (2013). World Journal of Microbiology and Biotechnology, 29(8), 1361–1369.

    CAS  PubMed  Google Scholar 

  64. Boukhris, I., Farhat-Khemakhem, A., Blibech, M., Bouchaala, K., & Chouayekh, H. (2015). International Journal of Biological Macromolecules, 80, 581–587.

    CAS  PubMed  Google Scholar 

  65. Kumar, V., Sangwan, P., Verma, A. K., & Agrawal, S. (2014). Applied Biochemistry and Biotechnology, 173(2), 646–659.

    CAS  PubMed  Google Scholar 

  66. Oh, B. C., Chang, B. S., Park, K. H., Ha, N. C., Kim, H. K., Oh, B. H., & Oh, T. K. (2001). Biochemistry, 40, 9669–9676.

    CAS  PubMed  Google Scholar 

  67. Borgi, M. A., Khila, M., Boudebbouze, S., Aghajari, N., Szukala, F., Pons, N., Maguin, E., & Rhimi, M. (2014). Applied Microbiology and Biotechnology, 98, 5937–5947.

    CAS  PubMed  Google Scholar 

  68. Verma, A., Singh, V. K., & Gaur, S. (2016). Computational Biology and Chemistry, 60, 53–58.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the Brazilian institutions CAPES for the scholarship granted to the first author, FAPEMIG, and CNPq for the resources provided to complete this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valéria Monteze Guimarães.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human or animal subjects.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 49 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, R.C., Tavares, M.P., Morgan, T. et al. Genome-Scale Characterization of Fungal Phytases and a Comparative Study Between Beta-Propeller Phytases and Histidine Acid Phosphatases. Appl Biochem Biotechnol 192, 296–312 (2020). https://doi.org/10.1007/s12010-020-03309-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03309-7

Keywords

Navigation