Skip to main content
Log in

Preparation of Biocompatible Liquid Marbles Stabilized by Food-Grade Stearate Microparticle for Aerobic Bacteria Cultivation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Liquid marble (LM), a non-stick drop coated with micro- or nano-scale particles, has great potential in a wide range of applications. LMs have an advantageous feature in which gas or vapor can freely transport through their particle shell; therefore, it makes them an ideal candidate to be utilized as microbioreactor containing aerobic microorganisms. In this study, safer and more biocompatible LMs were successfully prepared using a food-grade calcium stearate microparticle as a stabilizer. As the volume of core liquid increased, the height of LM increased and reached a constant value, as a similar trend has been reported in conventional LMs. The drying rate curve of the LMs confirmed that the LMs have a similar pattern with the drying of typical wet powders. The drying rate depended on the salt species in the core solution and the environmental humidity. For instance, in the case of MgCl2, by changing humidity from 40 to 80% RH, the lifetime of LMs (time in which the LM dried completely) was increased to about 900 min. This is nearly three times longer than those have no salt and at 40% RH. Model aerobic bacteria Bacillus subtilis has actively proliferated inside the LM during 24-h incubation. Comparing with the test tube cultivations under O2-rich stationary or O2 rich–shaken conditions, the cultivation in the LM system showed a higher proliferation than the test tube systems. As a conclusion, we demonstrated that the calcium stearate LM system would be an ideal candidate for safer and easily available microbioreactor containing aerobic bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aussillous, P., & Quéré, D. (2001). Liquid marbles. Nature, 411, 924–927.

    Article  CAS  Google Scholar 

  2. Tian, J., Arbatan, T., Li, X., & Shen, W. (2010). Porous liquid marble shell offers possibilities for gas detection and gas reactions. Chemical Engineering Journal, 165, 347–353.

    Article  CAS  Google Scholar 

  3. Arbatan, T., Li, L., Tian, J., & Shen, W. (2012). Liquid marbles as micro-bioreactors for rapid blood typing. Advanced Healthcare Materials, 1(1), 80–83.

    Article  CAS  Google Scholar 

  4. Vadivelu, R. K., Kamble, H., Munaz, A., & Nguyen, N. (2017). Liquid marble as bioreactor for engineering three-dimensional toroid tissues. Scientific Reports, 7, 1–14.

    Article  CAS  Google Scholar 

  5. Rychecký, O., Majerská, M., Král, V., Štěpánek, F., & Čejková, J. (2017). Spheroid cultivation of HT-29 carcinoma cell line in liquid marbles. Chemical Papers, 71, 1055–1063.

    Article  Google Scholar 

  6. Sreejith, K. R., Gorgannezhad, L., Jin, J., Ooi, C. H., Stratton, H., Daoa, D. V., & Nguyen, N. (2019). Liquid marbles as biochemical reactors for the polymerase chain reaction. Lab on a Chip, 19, 3143–3356.

    Article  Google Scholar 

  7. Huang, G., Li, M., Yang, Q., Li, Y., Liu, H., Yang, H., & Xu, F. (2017). Magnetically actuated droplet manipulation and its potential biomedical applications. ACS Applied Materials and Interfaces, 9(2), 1155–1166.

    Article  CAS  Google Scholar 

  8. Luo, X., Yin, H., Li, X., Su, X., & Feng, Y. (2018). CO2-triggered microreactions in liquid marbles. Chemical Communications, 54, 9119–9122.

    Article  CAS  Google Scholar 

  9. Tian, J., Fu, N., Chen, X., D, & Shen, W. (2013). Respirable liquid marble for the cultivation of microorganisms. Colloids and Surfaces B: Biointerfaces, 106, 187–190.

    Article  CAS  Google Scholar 

  10. Chen, Z., Zang, D., Zhao, L., Qu, M., Li, X., Li, X., Li, L., & Geng, X. (2017). Liquid marble coalescence and triggered microreaction driven by acoustic levitation. Langmuir, 33(25), 6232–6239.

    Article  CAS  Google Scholar 

  11. Gao, L., McCarthy, T., & J. (2007). Ionic liquid marbles. Langmuir, 23(21), 10445–10447.

    Article  CAS  Google Scholar 

  12. Bormashenko, E., Pogreb, R., Whyman, G., Musin, A., & Bormashenko, Y. (2009). Shape, vibrations, and effective surface tension of water marbles. Langmuir, 25(4), 1893–1896.

    Article  CAS  Google Scholar 

  13. Fullarton, C., Draper, T. C., Phillips, N., de Lacy Costello, B. P. J., & Adamatzky, A. (2019). Belousov–Zhabotinsky reaction in liquid marbles. J. Phys.: Mater., 2, 015005.

    Google Scholar 

  14. Doganci, M. D., Sesli, B. U., Erbil, H. Y., Binks, B. P., & Salama, I. E. (2011). Liquid marbles stabilized by graphite particles from aqueous surfactant solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 384, 417–426.

    Article  CAS  Google Scholar 

  15. Rao, A. V., Kulkarni, M. M., & Bhagat, S. D. (2004). Transport of liquids using superhydrophobic aerogels. Journal of Colloid and Interface Science, 285, 413–418.

    Google Scholar 

  16. Li, X., Wang, Y., Huang, J., Yang, Y., Wang, R., Geng, X., & Zang, D. (2017). Monolayer nanoparticle-covered liquid marbles derived from a sol-gel coating. Applied Physics Letters, 111, 261604.

    Article  Google Scholar 

  17. Li, X., Wang, R., Shi, H., & Song, B. (2018). Effective surface tension of liquid marbles using controllable nanoparticle monolayers. Applied Physics Letters, 113, 101602.

    Article  Google Scholar 

  18. Li, X. (2019). Liquid marbles and liquid plasticines with nanoparticle monolayers. Advances in Colloid and Interface Science, 271, 101988–101997.

    Article  CAS  Google Scholar 

  19. Geyer, F., Asaumi, Y., Vollmer, D., Butt, H.-J., Nakamura, Y., & Fujii, S. (2019). Polyhedral liquid marbles. Advanced Functional Materials, 29, 1808826.

    Article  Google Scholar 

  20. Ihara, T., & Iriyama, Y. (2011). Characteristics of liquid marbles formed with plasma-treated hydrophobic cellulose powder. Photopolymer Science and Technology, 24, 435–440.

    Article  CAS  Google Scholar 

  21. Hashmi, A., Strauss, A., & Xu, J. (2012). Freezing of a liquid marble. Langmuir, 28(28), 10324–10328.

    Article  CAS  Google Scholar 

  22. Bormashenko, E., Pogreb, R., Musin, A., Balter, R., Whyman, G., & Aurbach, D. (2010). Interfacial and conductive properties of liquid marbles coated with carbon black. Powder Technology, 203, 529–533.

    Article  CAS  Google Scholar 

  23. FDA, Substances Added to Food inventory (2018) https://www.accessdata.fda.gov/scripts/fdcc/?set=FoodSubstances. Accessed 28 Nov 2019.

  24. Zang, D., Chen, Z., Zhang, Y., Lin, K., Genga, X., & Binks, B. P. (2013). Effect of particle hydrophobicity on the properties of liquid water marbles. Soft Matter, 9, 5067–5073.

    Article  CAS  Google Scholar 

  25. Bormashenko, E., Pogreb, R., Whyman, G., & Musin, A. (2009). Surface tension of liquid marbles. Colloids Surf. A: Physicochem. Eng. Aspects, 351, 78–82.

    Article  CAS  Google Scholar 

  26. Li, X., Shi, H., Wang, Y., Wang, R., Huang, S., Huang, J., Geng, X., & Zang, D. (2018). Liquid shaping based on liquid pancakes. Advanced Materials Interfaces, 5, 1701139.

    Article  Google Scholar 

  27. Li, X., Wang, R., Huang, S., Wang, Y., & Shi, H. (2018). A capillary rise method for studying the effective surface tension of monolayer nanoparticle-covered liquid marbles. Soft Matter, 14, 9877–9884.

    Article  CAS  Google Scholar 

  28. Dandan, M., & Erbil, H. Y. (2009). Evaporation rate of graphite liquid marbles: Comparison with water droplets. Langmuir, 25(14), 8362–8367.

    Article  CAS  Google Scholar 

  29. Tosun, A., & Erbil, H. Y. (2009). Evaporation rate of PTFE liquid marbles. Applied Surface Science, 256, 1278–1283.

    Article  CAS  Google Scholar 

  30. Berk, Z. (2013). Food process engineering and technology (2nd ed.pp. 464–472). Cambridge, MA: Academic Press.

    Google Scholar 

  31. Lee, M. T. (1996) On the mechanism of evaporation of water from a nonhygroscopic porous medium, Int. Comm. Heat and Mass Transfer, 23, 939–946.

  32. Potter II, R. W., & Clynne, M. A. (1979). Solubility of some alkali and alkaline earth chlorides in water at moderate temperatures. Journal of Chemical & Engineering Data, 24, 338–340.

    Article  Google Scholar 

  33. International Union of Pure and Applied Chemistry. (1991). Solubility data series (Vol. 47). Oxford: Pergamon Press.

    Google Scholar 

  34. Clapp, K. P., Castan, A., & Lindskog, E. K. (2018). Biopharmaceutical processing: Development, design, and implementation of manufacturing processes (pp. 457–476). Amsterdam: Elsevier.

    Book  Google Scholar 

Download references

Funding

This research was supported by the JSPS KAKENHI Grant Number JP18K04830.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazumitsu Naoe.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 2580 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, S., Okano, H., Matsuda, N. et al. Preparation of Biocompatible Liquid Marbles Stabilized by Food-Grade Stearate Microparticle for Aerobic Bacteria Cultivation. Appl Biochem Biotechnol 191, 1684–1694 (2020). https://doi.org/10.1007/s12010-020-03299-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03299-6

Keywords

Navigation