Skip to main content

Advertisement

Log in

Development of a Strategy to Improve the Stability of Culture Environment for Docosahexaenoic Acid Fermentation by Schizochytrium sp.

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A stable culture environment is the key for optimal growth and metabolic activity of microorganisms, especially in marine species, and intermittent feeding during DHA production using Schizochytrium sp. generates an unstable culture environment. To investigate the effect of unstable culture environment on the cells’ physiological status and DHA synthesis, fermentations with different feeding strategies were performed on the lab scale. The intermittent feeding strategy caused fluctuations of substrate concentration and osmotic pressure, which had a negative effect on cell division and product synthesis. The physiological status and metabolic level of Schizochytrium sp. were relatively stable under a continuous feeding strategy with a relatively stable substrate concentration of 20–25 g/L, which was beneficial for the efficient transformation of substrate, leading to an improvement of DHA productivity. This strategy was further applied to pilot scale, whereby the DHA content, DHA productivity, convert ratio of glucose to lipid and DHA reached 55.02%, 320.17 mg/(L·h), 24.35%, and 13.40%, respectively. This study therefore provides an efficient strategy for ensuring a stable culture environment for the production of DHA and similar metabolites.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Guo, D. S., Ji, X. J., Ren, L. J., Li, G. L., Yin, F. W., & Huang, H. (2016). Development of a real-time bioprocess monitoring method for docosahexaenoic acid production by Schizochytrium sp. Bioresource Technology, 216, 422–427.

    CAS  PubMed  Google Scholar 

  2. Ji, X. J., Mo, K. Q., Ren, L. J., Li, G. L., Huang, J. Z., & Huang, H. (2015). Genome sequence of Schizochytrium sp. CCTCC M209059, an effective producer of docosahexaenoic acid-rich lipids. Genome Announcements, 3, e00819–e00815.

    PubMed  PubMed Central  Google Scholar 

  3. Safdar, W., Zan, X., Shamoon, M., Sharif, H. R., Mukama, O., Tang, X., & Song, Y. (2017). Effects of twenty standard amino acids on biochemical constituents, docosahexaenoic acid production and metabolic activity changes of Crypthecodinium cohnii. Bioresource Technology, 238, 738–743.

    CAS  PubMed  Google Scholar 

  4. Ren, L. J., Sun, X. M., Ji, X. J., Chen, S. L., Guo, D. S., & Huang, H. (2017). Enhancement of docosahexaenoic acid synthesis by manipulation of antioxidant capacity and prevention of oxidative damage in Schizochytrium sp. Bioresource Technology, 223, 141–148.

    CAS  PubMed  Google Scholar 

  5. Sakarika, M., & Kornaros, M. (2017). Kinetics of growth and lipids accumulation in Chlorella vulgaris during batch heterotrophic cultivation: effect of different nutrient limitation strategies. Bioresource Technology, 243, 356–365.

    CAS  PubMed  Google Scholar 

  6. Guo, D. S., Ji, X. J., Ren, L. J., Li, G. L., Sun, X. M., & Huang, H. (2017). Development of a scale-up strategy for fermentative production of docosahexaenoic acid by Schizochytrium sp. Chemical Engineering Science, 176, 600–608.

    Google Scholar 

  7. Cui, G. Z., Ma, Z., Liu, Y. J., Feng, Y., Sun, Z., Cheng, Y., Song, X., & Cui, Q. (2016). Overexpression of glucose-6-phosphate dehydrogenase enhanced the polyunsaturated fatty acid composition of Aurantiochytrium sp. SD116. Algal Research, 19, 138–145.

    Google Scholar 

  8. Ji, X. J., Ren, L. J., & Huang, H. (2015). Omega-3 biotechnology: a green and sustainable process for omega-3 fatty acids production. Frontiers in Bioengineering and Biotechnology, 3, 158.

    PubMed  PubMed Central  Google Scholar 

  9. Singh, D., Barrow, C. J., Puri, M., Tuli, D. K., & Mathur, A. S. (2016). Combination of calcium and magnesium ions prevents substrate inhibition and promotes biomass and lipid production in thraustochytrids under higher glycerol concentration. Algal Research, 15, 202–209.

    Google Scholar 

  10. Furlan, V. J., Maus, V., Batista, I., & Bandarra, N. M. (2017). Production of docosahexaenoic acid by Aurantiochytrium sp. ATCC PRA-276. Brazilian Journal of Microbiology, 48(2), 359–365.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ren, L. J., Hu, X. C., Zhao, X. Y., Chen, S. L., Wu, Y., Li, D., Yu, Y. D., Geng, L. J., Ji, X. J., & Huang, H. (2017). Transcriptomic analysis of the regulation of lipid fraction migration and fatty acid biosynthesis in Schizochytrium sp. Scientific Reports, 7(2017), 3562.

    PubMed  PubMed Central  Google Scholar 

  12. Ren, L. J., Zhuang, X. Y., Chen, S. L., Ji, X. J., & Huang, H. (2015). Introduction of omega-3 desaturase obviously changed the fatty acid profile and sterol content of Schizochytrium sp. Journal of Food Agriculture and Environment, 63, 9770–9776.

    CAS  Google Scholar 

  13. Hu, X. C., Ren, L. J., Chen, S. L., Zhang, L., Ji, X. J., & Huang, H. (2015). The roles of different salts and a novel osmotic pressure control strategy for improvement of DHA production by Schizochytrium sp. Bioprocess and Biosystems Engineering, 38, 2129–2136.

    CAS  PubMed  Google Scholar 

  14. Lian, M., Huang, H., Ren, L. J., Ji, X. J., Zhu, J., & Jin, L. (2010). Increase of docosahexaenoic acid production by Schizochytrium sp. through mutagenesis and enzyme assay. Applied Biochemistry and Biotechnology, 162(4), 935–941.

    CAS  PubMed  Google Scholar 

  15. Steinrücken, P., Erga, S. R., Mjøs, S. A., Kleivdal, H., & Prestegard, S. K. (2017). Bioprospecting North Atlantic microalgae with fast growth and high polyunsaturated fatty acid (PUFA) content for microalgae-based technologies. Algal Research, 26, 392–401.

    PubMed  PubMed Central  Google Scholar 

  16. Schörken, U., & Kempers, P. (2009). Lipid biotechnology: industrially relevant production processes. European Journal of Lipid Science and Technology, 111, 627–645.

    Google Scholar 

  17. Ganuza, E., Anderson, A. J., & Ratledge, C. (2008). High-cell-density cultivation of Schizochytrium sp. in an ammonium/pH-auxostat fed-batch system. Biotechnology Letters, 30(2008), 1559–1564.

    CAS  PubMed  Google Scholar 

  18. Zeng, Y., Ji, X. J., Lian, M., Ren, L. J., Jin, L. J., Ouyang, P. K., & Huang, H. (2011). Development of a temperature shift strategy for efficient docosahexaenoic acid production by a marine fungoid protist, Schizochytrium sp. HX-308. Applied Biochemistry and Biotechnology, 164(3), 249–255.

    CAS  PubMed  Google Scholar 

  19. Liu, T., Li, Y., Liu, F., & Wang, C. (2016). The enhanced lipid accumulation in oleaginous microalga by the potential continuous nitrogen-limitation (CNL) strategy. Bioresource Technology, 203, 150–159.

    CAS  PubMed  Google Scholar 

  20. Ling, X., Guo, J., Liu, X., Zhang, X., Wang, N., Lu, Y., & Ng, I. S. (2015). Impact of carbon and nitrogen feeding strategy on high production of biomass and docosahexaenoic acid (DHA) by Schizochytrium sp. LU310. Bioresource Technology, 184, 139–147.

    CAS  PubMed  Google Scholar 

  21. Sun, L. N., Ren, L. J., Zhuang, X. Y., Ji, X. J., Yan, J. C., & Huang, H. (2014). Differential effects of nutrient limitations on biochemical constituents and docosahexaenoic acid production of Schizochytrium sp. Bioresource Technology, 159, 199–206.

    CAS  PubMed  Google Scholar 

  22. Guo, D. S., Ji, X. J., Ren, L. J., Li, G. L., & Huang, H. (2017). Improving docosahexaenoic acid production by Schizochytrium sp. using a newly designed high-oxygen-supply bioreactor. AICHE Journal, 63, 4278–4286.

    CAS  Google Scholar 

  23. Duan, S., Yuan, G., Zhao, Y., Ni, W., Luo, H., Shi, Z., & Liu, F. (2013). Simulation of computational fluid dynamics and comparison of cephalosporin C fermentation performance with different impeller combinations. Korean Journal of Chemical Engineering, 30, 1097–1104.

    CAS  Google Scholar 

  24. Zou, X., Xia, J. Y., Chu, J., Zhuang, Y. P., & Zhang, S. L. (2012). Real-time fluid dynamics investigation and physiological response for erythromycin fermentation scale-up from 50 L to 132 m3 fermenter. Bioprocess and Biosystems Engineering, 35(5), 789–800.

    CAS  PubMed  Google Scholar 

  25. Qu, L., Ren, L. J., & Huang, H. (2013). Scale-up of docosahexaenoic acid production in fed-batch fermentation by Schizochytrium sp. based on volumetric oxygen-transfer coefficient. Biochemical Engineering Journal, 77, 82–87.

    CAS  Google Scholar 

  26. Zhao, X. Y., Ren, L. J., Guo, D. S., Wu, W. J., Ji, X. J., & Huang, H. (2016). CFD investigation of Schizochytrium sp. impeller configurations on cell growth and docosahexaenoic acid synthesis. Bioprocess and Biosystems Engineering, 39(8), 1297–1304.

    CAS  PubMed  Google Scholar 

  27. Li, J., Liu, R., Chang, G., Li, X., Chang, M., Liu, Y., Jin, Q., & Wang, X. (2015). A strategy for the highly efficient production of docosahexaenoic acid by Aurantiochytrium limacinum SR21 using glucose and glycerol as the mixed carbon sources. Bioresource Technology, 177, 51–57.

    CAS  PubMed  Google Scholar 

  28. Yan, J., Cheng, R., Lin, X., You, S., Li, K., Rong, H., & Ma, Y. (2013). Overexpression of acetyl-CoA synthetase increased the biomass and fatty acid proportion in microalga Schizochytrium. Applied Microbiology and Biotechnology, 97(5), 1933–1939.

    CAS  PubMed  Google Scholar 

  29. Zhang, S. L., Chu, J., & Zhuang, Y. P. (2004). A multi-scale study of industrial fermentation processes and their optimization. Advances in Biochemical Engineering/Biotechnology, 87, 97–150.

    CAS  PubMed  Google Scholar 

  30. Sun, X. M., Ren, L. J., Ji, X. J., Chen, S. L., Guo, D. S., & Huang, H. (2016). Adaptive evolution of Schizochytrium sp. by continuous high oxygen stimulations to enhance docosahexaenoic acid synthesis. Bioresource Technology, 211, 374–381.

    CAS  PubMed  Google Scholar 

  31. Liu, L., Xu, Q., Li, Y., Shi, Z., Zhu, Y., Du, G., & Chen, J. (2007). Enhancement of pyruvate production by osmotic-tolerant mutant of Torulopsis glabrata. Biotechnology and Bioengineering, 97, 825.

    CAS  PubMed  Google Scholar 

  32. Ren, L. J., Ji, X. J., Huang, H., Qu, L., Feng, Y., Tong, Q. Q., & Ouyang, P. K. (2010). Development of a stepwise aeration control strategy for efficient docosahexaenoic acid production by Schizochytrium sp. Applied Microbiology and Biotechnology, 87(5), 1649–1656.

    CAS  PubMed  Google Scholar 

  33. Wu, S. T., Yu, S. T., & Lin, L. P. (2005). Effect of culture conditions on docosahexaenoic acid production by Schizochytrium sp. S31. Process Biochemistry, 40, 3103–3108.

    CAS  Google Scholar 

  34. Ratledge, C. (2014). The role of malic enzyme as the provider of NADPH in oleaginous microorganisms: a reappraisal and unsolved problems. Biotechnology Letters, 36(8), 1557–1568.

    CAS  PubMed  Google Scholar 

  35. Hauvermale, A., Kuner, J., Rosenzweig, B., Guerra, D., Diltz, S., & Metz, J. G. (2006). Fatty acid production in Schizochytrium sp.: involvement of a polyunsaturated fatty acid synthase and a type I fatty acid synthase. Lipids, 41, 739.

    CAS  PubMed  Google Scholar 

  36. Xiong, Z. Q., Guo, M. J., & Guo, Y. X. (2010). RQ feedback control for simultaneous improvement of GSH yield and GSH content in Saccharomyces cerevisiae T65. Enzyme and Microbial Technology, 46, 598–602.

    CAS  Google Scholar 

  37. Record, M. T., Courtenay, E. S., Cayley, D. S., & Guttman, H. J. (1998). Responses of E. coli to osmotic stress: Large changes in amounts of cytoplasmic solutes and water. Trends in Biochemical Sciences, 23(4), 143–148.

    CAS  PubMed  Google Scholar 

  38. Hohmann, S. (2002). Osmotic stress signaling and osmoadaptation in yeasts. Microbiology and Molecular Biology Reviews, 66(2), 300–372.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Metz, J. G., Roessler, P., Facciotti, D., Levering, C., Dittrich, F., Lassner, M., Valentine, R., Lardizabal, K., Domergue, F., & Yamada, A. (2001). Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science, 293(5528), 290–293.

    CAS  PubMed  Google Scholar 

  40. Chang, G. F., Wu, J., Jiang, C., Tian, G., Wu, Q., Chang, M., & Wang, X. (2014). The relationship of oxygen uptake rate and k(L)a with rheological properties in high cell density cultivation of docosahexaenoic acid by Schizochytrium sp. S31. Bioresource Technology, 152, 234–240.

    CAS  PubMed  Google Scholar 

  41. Akimoto, M., Ishii, T., Yamagaki, K., Ohtaguchi, K., Koide, K., & Yazawa, K. (1991). Metal salts requisite for the production of eicosapentaenoic acid by a marine bacterium isolated from mackerel intestines. Journal of the American Oil Chemists Society, 68, 504–508.

    CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Key Research and Development Program of China (No. 2018YFC1604104), the National Natural Science Foundation of China (Nos. 21376002, 21476111, and 21606192), the Jiangsu Provincial Natural Science Foundation (No. BK20131405), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Qing Ding.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Intermittent feeding caused fluctuation of substrate content and osmotic stress.

• The Physiological of Schizochytrium sp in unstable culture environment was studied.

• Fatty acid metabolism in Schizochytrium sp at different osmotic stress was studied.

• The DHA efficient production was realized by a continuous feeding strategy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, DS., Tong, LL., Ji, XJ. et al. Development of a Strategy to Improve the Stability of Culture Environment for Docosahexaenoic Acid Fermentation by Schizochytrium sp.. Appl Biochem Biotechnol 192, 881–894 (2020). https://doi.org/10.1007/s12010-020-03298-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03298-7

Keywords

Navigation