Skip to main content
Log in

Ionic Liquid Tolerance of Yeasts in Family Dipodascaceae and Genus Wickerhamomyces

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In previous studies of ionic liquid (IL) tolerance of numerous species of ascomycetous yeasts, two strains of Wickerhamomyces ciferrii and Galactomyces candidus had unusually high tolerance in media containing up to 5% (w/v) of the 1-ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]). The study aimed at investigating whether additional strains of these species, and additional species in the Dipodascaceae family, also possess IL tolerance, and to compare sensitivity to the acetate and chloride versions of the ionic liquid. Fifty five yeast strains in the family Dipodascaceae, which encompasses genera Galactomyces, Geotrichum, and Dipodascus, and seven yeast strains of species Wickerhamomyces ciferrii were tested for ability to grow in laboratory medium containing no IL, 242 mM [C2C1Im][OAc], or 242 mM [C2C1Im]Cl, and in IL-pretreated switchgrass hydrolysate. Many yeasts exhibited tolerance of one or both ILs, with higher tolerance of the chloride anion than of the acetate anion. Different strains of the same species exhibited varying degrees of IL tolerance. Galactomyces candidus, UCDFSTs 52–260, and 50–64, had exceptionally robust growth in [C2C1Im][OAc], and also grew well in the switchgrass hydrolysate. Identification of IL tolerant and IL resistant yeast strains will facilitate studies of the mechanism of IL tolerance, which could include superior efflux, metabolism or exclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dadi, A. P., Varanasi, S., & Schall, C. A. (2006). Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol Bioeng, 95, 904–910.

    Article  CAS  Google Scholar 

  2. Yoo, C. G., Pu, Y., & Ragauskas, A. J. (2017). Ionic liquids: promising green solvents for lignocellulosic biomass utilization. Current Opinion in Green and Sustainable Chemistry,5, 5–11.

  3. Cao, Y., Zhang, R., Cheng, T., Guo, J., Xian, M., & Liu, H. (2017). Imidazolium-based ionic liquids for cellulose pretreatment: recent progresses and future perspectives. Applied Microbiology and Biotechnology,101, 521–532.

  4. Brandt, A., Gräsvik, J., Hallet, J., & Welton, T. (2013). Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem,15, 550–583.

  5. Docherty, K., & Kulpa, C. (2005). Toxicity and antimicrobial activity of imadazolium and pyridinium ionic liquids. Green Chemistry,7, 185–189.

  6. Ouellet, M., Datta, S., Dibble, D. C., Tamrakar, P. R., Benke, P. I., Li, C. L., Singh, S., Sale, K. L., Adams, P. D., Keasling, J. D., Simmons, B. A., Holmes, B. M., & Mukhopadhyay, A. (2011). Impact of ionic liquid pretreated plant biomass on Saccharomyces cerevisiae growth and biofuel production. Green Chemistry, 13, 2743–2749.

    Article  CAS  Google Scholar 

  7. Portillo, M. d. C., & Saadeddin, A. (2015). Recent trends in ionic liquid (IL) tolerant enzymes and microorganisms for biomass conversion. Critical Reviews in Biotechnology, 35, 294–301.

    Article  Google Scholar 

  8. Datta, S., Holmes, B., Park, J. I., Chen, Z. W., Dibble, D. C., Hadi, M., Blanch, H. W., Simmons, B. A., & Sapra, R. (2010). Ionic liquid tolerant hyperthermophilic cellulases for biomass pretreatment and hydrolysis. Green Chemistry, 12, 338–345.

    Article  CAS  Google Scholar 

  9. Walker, C., Ryu, S. and Trinh, C. T. (2018) Exceptional Solvent Tolerance in Yarrowia lipolytica Is Enhanced by Sterols. bioRxiv.

  10. Zhu, S. D., Luo, F., Huang, W. J., Huang, W. X., & Wu, Y. X. (2017). Comparison of three fermentation strategies for alleviating the negative effect of the ionic liquid 1-ethyl-3-methylimidazolium acetate on lignocellulosic ethanol production. Applied Energy,197, 124–131.

  11. Higgins, D. A., Young, M. K. M., Tremaine, M., Sardi, M., Fletcher, J. M., Agnew, M., Liu, L., Dickinson, Q., Peris, D., Wrobel, R. L., Hittinger, C. T., Gasch, A. P., Singer, S. W., Simmons, B. A., Landick, R., Thelen, M. P., & Sato, T. K. (2018). Natural Variation in the Multidrug Efflux Pump SGE1 Underlies Ionic Liquid Tolerance in Yeast. Genetics,210, 219–234.

  12. Liu, L., Hu, Y., Wen, P., Li, N., Zong, M., Ou-Yang, B., & Wu, H. (2015). Evaluating the effects of biocompatible cholinium ionic liquids on microbial lipid production by Trichosporon fermentans. Biotechnol Biofuels,8, 119.

  13. Mehmood, N., Alayoubi, R., Husson, E., Jacquard, C., Buchs, J., Sarazin, C., & Gosselin, I. (2018). Kluyveromyces marxianus, an attractive yeast for ethanolic fermentation in the presence of imidazolium ionic liquids. International Journal of Molecular Sciences,19. https://doi.org/10.3390/ijms19030887.

  14. Huang, Q., Wang, Q., Gong, Z., Jin, G., Shen, H., Xiao, S., Xie, H., Ye, S., Wang, J., & Zhao, Z. K. (2013). Effects of selected ionic liquids on lipid production by the oleaginous yeast Rhodosporidium toruloides. Bioresource Technology,130, 339–344.

    Article  CAS  Google Scholar 

  15. Reddy, A., Simmons, C., Claypool, J., Jabusch, L., Burd, H., Hadi, M., Simmons, B., Singer, S., & VanderGheynst, J. (2012). Thermophilic enrichment of microbial communities in the presence of the ionic liquid 1-ethyl-3-methylimidazolium acetate. Journal of Applied Microbiology,113, 1362–1370.

  16. Simmons, C. W., Reddy, A. P., Vandergheynst, J. S., Simmons, B. A., & Singer, S. W. (2014). Bacillus coagulans tolerance to 1-ethyl-3-methylimidazolium-based ionic liquids in aqueous and solid-state thermophilic culture. Biotechnol Prog,30, 311–316.

  17. Sitepu, I., Shi, S., Simmons, B. A., Singer, S., Boundy-Mills, K., & Simmons, C. (2014). Yeast tolerance to the ionic liquid 1-ethyl-3-methylimidazolium acetate. FEMS Yeast Res,14, 1286–1294.

    Article  CAS  Google Scholar 

  18. Dickinson, Q., Bottoms, S., Hinchman, L., McIlwain, S., Li, S., Myers, C. L., Boone, C., Coon, J. J., Hebert, A., & Sato, T. K. (2016). Mechanism of imidazolium ionic liquids toxicity in Saccharomyces cerevisiae and rational engineering of a tolerant, xylose-fermenting strain. Microbial Cell Factories,15, 17.

  19. Ruegg, T. L., Kim, E.-M., Simmons, B. A., Keasling, J. D., Singer, S. W., Soon Lee, T., & Thelen, M. P. (2014). An auto-inducible mechanism for ionic liquid resistance in microbial biofuel production. Nature Communications,5, 3490.

  20. Sitepu, I. R., Enriquez, L. L., Nguyen, V., Doyle, C., Simmons, B. A., Singer, S. W., Fry, R., Simmons, C. W., & Boundy-Mills, K. (2019). Ethanol production in switchgrass hydrolysate by ionic liquid-tolerant yeasts. Bioresource Technology Reports, 100, 275.

    Google Scholar 

  21. Sitepu, I. R., Garay, L. A., Enriquez, L., Fry, R., Butler, J. H., Lopez, J. M., Kanti, A., Faulina, S. A., Nugroho, A. J., & Simmons, B. A. (2017). 1-Ethyl-3-methylimidazolium tolerance and intracellular lipid accumulation of 38 oleaginous yeast species. Applied Microbiology Biotechnology,101, 8621–8631.

    Article  CAS  Google Scholar 

  22. Pal, S., Sar, A., & Dam, B. (2019). Moderate halophilic bacteria, but not extreme halophilic archaea can alleviate the toxicity of short-alkyl side chain imidazolium-based ionic liquids. Ecotoxicology and Environmental Safety,184, 109–634.

  23. Megaw, J., Busetti, A., & Gilmore, B. F. (2013). Isolation and Characterization of 1-Alkyl-3-Methylimidazolium Chloride Ionic Liquid-Tolerant and Biodegrading Marine Bacteria. PLOS ONE,8, e60806.

    Article  CAS  Google Scholar 

  24. Kurtzman, C., Fell, J., & Boekhout, T. (2011). The Yeasts: A Taxonomic Study (5th ed.). Amsterdam: Elsevier.

    Google Scholar 

  25. Golomb, B. L., Morales, V., Jung, A., Yau, B., Boundy-Mills, K. L., & Marco, M. L. (2012). Effects of pectinolytic yeast on the microbial composition and spoilage of olive fermentations. Food Microbiology,33, 97–106.

    Article  Google Scholar 

  26. Hamby, K. A., Hernández, A., Boundy-Mills, K., & Zalom, F. G. (2012). Associations of yeasts with spotted-wing Drosophila (Drosophila suzukii; Diptera: Drosophilidae) in cherries and raspberries. Applied and Environmental Microbiology,78, 4869–4873.

  27. Li, C., Tanjore, D., He, W., Wong, J., Gardner, J. L., Thompson, V. S., Yancey, N. A., Sale, K. L., Simmons, B. A., & Singh, S. (2015). Scale-up of ionic liquid-based fractionation of single and mixed feedstocks. BioEnergy Research,8, 982–991.

    Article  CAS  Google Scholar 

  28. Liang, L., Yan, J., He, Q., Luong, T., Pray, T. R., Simmons, B. A., & Sun, N. (2018) Scale-up of biomass conversion using 1-ethyl-3-methylimidazolium acetate as the solvent. Green Energy & Environment, 4, 432–438

  29. Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution,39, 783–791.

  30. Nei, M., & Kumar, S. (2000). Molecular evolution and phylogenetics. Oxford: Oxford University Press.

  31. Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution,35, 1547–1549.

  32. Mehmood, N., Husson, E., Jacquard, C., Wewetzer, S., Buchs, J., Sarazin, C., & Gosselin, I. (2015). Impact of two ionic liquids, 1-ethyl-3-methylimidazolium acetate and 1-ethyl-3-methylimidazolium methylphosphonate, on Saccharomyces cerevisiae: metabolic, physiologic, and morphological investigations. Biotechnol Biofuels,8, 17.

    Article  Google Scholar 

  33. Zhang, T., Datta, S., Simmons, B. A. and Rubin, E. M. (2018) Methods of hydrolyzing a cellulose using halophilic, thermostable and ionic liquids tolerant cellulases. Google Patents.

  34. Park, J. I., Steen, E. J., Burd, H., Evans, S. S., Redding-Johnson, A. M., Batth, T., Benke, P. I., D’Haeseleer, P., Sun, N., Sale, K. L., Keasling, J. D., Lee, T. S., Petzold, C. J., Mukhopadhyay, A., Singer, S. W., Simmons, B. A., & Gladden, J. M. (2012). A Thermophilic Ionic Liquid-Tolerant Cellulase Cocktail for the Production of Cellulosic Biofuels. PLOS ONE,7, e37010.

    Article  CAS  Google Scholar 

  35. Sitepu, I., Garay, L., Enriquez, L., Fry, R., Butler, J., Lopez, J., Kanti, A., Faulina, S., Nugroho, A., Simmons, B. A., Singer, S., Simmons, C., & Boundy-Mills, K. (2017). 1-Ethyl-3-methylimidazolium tolerance and intracellular lipid accumulation of 38 oleaginous yeast species. Applied Microbiology And Biotechnology,101, 8621–8631.

    Article  CAS  Google Scholar 

  36. Syal, P., & Vohra, A. (2014). Probiotic attributes of a yeast-like fungus, Geotrichum klebahnii. African Journal of Microbiology Research,8, 2037–2043.

    Article  Google Scholar 

  37. Park, H. J., Bae, J. H., Ko, H. J., Lee, S. H., Sung, B. H., Han, J. I., & Sohn, J. H. (2018). Low-pH production of d-lactic acid using newly isolated acid tolerant yeast Pichia kudriavzevii NG7. Biotechnology and Bioengineering115, 2232–2242.

  38. Shehata, A. M., Mrak, E. M., & Phaff, H. (1955). Yeasts isolated from Drosophila and from their suspected feeding places in southern and central California. Mycologia,47, 799–811.

    Article  Google Scholar 

  39. Phaff, H., Miller, M. W., Recca, J. A., Shifrine, M., & Mrak, E. M. (1956). Studies on the ecology of Drosophila in the Yosemite region of California. II. Yeast found in the alimentary canal of Drosophila. Ecology,37, 533–538.

  40. Sitepu, I., Ignatia, L., Franz, A., Wong, D., Faulina, S., Tsui, M., Kanti, A., & Boundy-Mills, K. (2012). An improved high-throughput Nile red fluorescence assay for estimating intracellular lipids in a variety of yeast species. Journal of Microbiological Methods,91, 321–328.

    Article  CAS  Google Scholar 

  41. Sitepu, I. R., Sestric, R., Ignatia, L., Levin, D., Bruce German, J., Gillies, L. A., Almada, L. A., & Boundy-Mills, K. L. (2013). Manipulation of culture conditions alters lipid content and fatty acid profiles of a wide variety of known and new oleaginous yeasts species. Bioresource Technology,144, 360–369.

    Article  CAS  Google Scholar 

  42. Sitepu, I., Jin, M., Fernandez, J., Sousa, L., Balan, V., & Boundy-Mills, K. (2014). Identification of oleaginous yeast strains able to accumulate high intracellular lipids when cultivated in alkaline pretreated corn stover. Applied Microbiology and Biotechnology,98, 7645–7657.

  43. Garay, L. A., Sitepu, I. R., Cajka, T., Chandra, I., Shi, S., Lin, T., German, J. B., Fiehn, O., & Boundy-Mills, K. L. (2016). Eighteen new oleaginous yeast species. Journal of Industrial Microbiology & Biotechnology, 43, 1–14.

    Article  Google Scholar 

  44. Boundy-Mills, K. (2008). The Phaff Yeast Culture Collection has found its niche. Society for Industrial Microbiology News,58, 49–56.

  45. McCluskey, K., Wiest, A., & Boundy-Mills, K. (2014). Fungal Genomics. In M. Nowrousian (Ed.), (pp. 81–96). Berlin: Springer Berlin Heidelberg.

    Chapter  Google Scholar 

  46. Boundy-Mills, K., Hess, M., Bennett, A. R., Ryan, M., Kang, S., Nobles, D., Eisen, J. A., Inderbitzin, P., Sitepu, I. R., Torok, T., Brown, D. R., Cho, J., Wertz, J. E., Mukherjee, S., Cady, S. L., & McCluskey, K. (2015). The United States Culture Collection Network (USCCN): enhancing microbial genomics research through living microbe culture collections. Applied and Environmental Microbiology,81, 5671–5674.

    Article  CAS  Google Scholar 

  47. Boundy-Mills, K. L., Glantschnig, E., Roberts, I. N., Yurkov, A., Casarégola, S., Daniel, H.-M., & Turchetti, B. (2016). Yeast culture collections in the twenty-first century: new opportunities and challenges. Yeast,33, 243–260.

    Article  CAS  Google Scholar 

  48. McCluskey, K., Alvarez, A., Bennett, A. R., Bokati, D., Boundy-Mills, K., Brown, D., Bull, C. T., Coffey, M., Dreaden, T., & Duke, C. (2016). The US Culture Collection Network lays the foundation for progress in preservation of valuable microbial resources. Phytopathology,106, 532–540.

    Article  Google Scholar 

  49. Sitepu, I., Garay, L., Sestric, R., Levin, D., Block, D. E., German, J., & Boundy-Mills, K. (2014). Oleaginous yeasts for biodiesel: current and future trends in biology and production. Journal of Biotechnology Advances,32, 1336–1360.

  50. Breierova, E. (1997). Yeast exo-glycoproteins produced under NaCl-stress conditions as efficient cryoprotective agents. Letters in Applied Microbiology,25, 254–256.

    Article  CAS  Google Scholar 

  51. Rosenberg, M., Mikovà, H., & Krištofikovà, L. (1999). Formation of L-malic acid by yeasts of the genus Dipodascus. Letters in Applied Microbiology,29, 221–223.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

John Butler, Luis A. Garay, Erin Cathcart, Julian Lopez, Jennifer L. Lincoln, Kent Makishima, and Shanny Krisna are gratefully acknowledged for technical assistance. The authors express gratitude to Dr. Gianluigi Cardinali (University of Perugia, Italy) for providing novel yeast species.

Funding

Work performed at the Joint BioEnergy Institute was supported by the Office of Science, Office of Biological and Environmental Research, of the US Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyria L. Boundy-Mills.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2050 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sitepu, I., Enriquez, L., Nguyen, V. et al. Ionic Liquid Tolerance of Yeasts in Family Dipodascaceae and Genus Wickerhamomyces. Appl Biochem Biotechnol 191, 1580–1593 (2020). https://doi.org/10.1007/s12010-020-03293-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03293-y

Keywords

Navigation