Skip to main content
Log in

Surfactant as an Additive for the Recovery of Potent Antioxidants from Garcinia mangostana Pericarps Using a Polymer/Salt Aqueous Biphasic System

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Garcinia mangostana pericarp is a good source of natural antioxidants with numerous functional properties. The conventional approaches for the recovery of antioxidants from Garcinia mangostana pericarp require long processing time and high temperature, which may cause degradation or loss of bioactivity of antioxidants, and often result in low recovery efficiency. In this study, the extraction of antioxidants from Garcinia mangostana pericarp was investigated using a polyethylene glycol (PEG)/citrate aqueous biphasic system (ABS) with the addition of surfactants. The optimum condition for the recovery of antioxidants was achieved in PEG 1000/citrate ABS of pH 8 with tie-line length (TLL) of 48.3% (w/w), volume ratio (VR) of 1.6, 0.2% (w/w) sample loading and addition of 1.0% (w/w) Tween 85. The antioxidants were recovered in the PEG-rich top phase with a high K value of 18.23 ± 0.33 and a recovery yield of 92.01% ± 0.09. The findings suggested that the addition of surfactants to polymer/salt ABS can enhance the recovery of antioxidants from Garcinia mangostana pericarps by conserving the antioxidative properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kim, H., Moon, J. Y., Kim, H., Lee, D.-S., Cho, M., Choi, H.-K., Kim, Y. S., Mosaddik, A., & Cho, S. K. (2010). Antioxidant and antiproliferative activities of mango (Mangifera indica L.) flesh and peel. Food Chemistry, 121, 429–436.

    Article  CAS  Google Scholar 

  2. Nurliyana, R., Syed Zahir, I., Mustapha Suleiman, K., Aisyah, M. R., & Kamarudin, K. R. (2010). Antioxidant study of pulps and peels of dragon fruits: a comparative study. International Food Research Journal, 17, 367–375.

    CAS  Google Scholar 

  3. Yang, X., Yan, F., Huang, S., & Fu, C. (2014). Antioxidant activities of fractions from longan pericarps. Food Science and Technology, 34, 341–345.

    Article  Google Scholar 

  4. Riyanto, S., & Rohman, A. (2017). Antioxidant activities of rambutan (Nephelium lappaceum L) peel in vitro. Food Research, 2, 119–123.

    Article  Google Scholar 

  5. Suttirak, W., & Manurakchinakorn, S. (2014). In vitro antioxidant properties of mangosteen peel extract. Journal of Food Science and Technology, 51(12), 3546–3558.

    Article  CAS  Google Scholar 

  6. Lerslerwong, L., Rugkong, A., Imsabai, W., & Ketsa, S. (2013). The harvest period of mangosteen fruit can be extended by chemical control of ripening—a proof of concept study. Scientia Horticulturae, 157, 13–18.

    Article  CAS  Google Scholar 

  7. Seesom, W., Jaratrungtawee, A., Suksamrarn, S., Mekseepralard, C., Ratananukul, P., & Sukhumsirichart, W. (2013). Antileptospiral activity of xanthones from Garcinia mangostana and synergy of gamma-mangostin with penicillin G. BMC Complementary and Alternative Medicine, 13, 182–182.

    Article  Google Scholar 

  8. Aizat, W. M., Ahmad-Hashim, F. H., & Syed Jaafar, S. N. (2019). Valorization of mangosteen, “the queen of fruits,” and new advances in postharvest and in food and engineering applications: a review. Journal of Advanced Research, 20, 61–70.

    Article  CAS  Google Scholar 

  9. Kusmayadi, A., Adriani, L., Abun, A., Muchtaridi, M., & Hidayat Tanuwiria, U. (2019). Antioxidant activity of mangosteen peel (Garcinia mangostana L.) extracted using different solvents at the different times. Drug Invention Today, 11, 44–48.

    Google Scholar 

  10. Fang, L., Liu, Y., Zhuang, H., Liu, W., Wang, X., & Huang, L. (2011). Combined microwave-assisted extraction and high-speed counter-current chromatography for separation and purification of xanthones from Garcinia mangostana. Journal of Chromatography B, 879, 3023–3027.

    Article  CAS  Google Scholar 

  11. Dai, J., & Mumper, R. J. (2010). Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules, 15(10), 7313–7352.

    Article  CAS  Google Scholar 

  12. Iqbal, M., Tao, Y., Xie, S., Zhu, Y., Chen, D., Wang, X., Huang, L., Peng, D., Sattar, A., Shabbir, M. A. B., Hussain, H. I., Ahmed, S., & Yuan, Z. (2016). Aqueous two-phase system (ATPS): an overview and advances in its applications. Biological Procedures Online, 18, 18.

    Article  Google Scholar 

  13. Gupta, R., Bradoo, S., & Saxena, R. K. (1999). Aqueous two-phase systems: an attractive technology for downstream processing of biomolecules. Current Science, 77, 520–523.

    CAS  Google Scholar 

  14. Yuan, C., Xu, Z., Fan, M., Liu, H., Xie, Y., & Zhu, T. (2014). Study on characteristics and harm of surfactants. Journal of Chemical and Pharmaceutical, 6, 2233–2237.

    Google Scholar 

  15. Hosseinzadeh, R., Khorsandi, K., & Hemmaty, S. (2013). Study of the effect of surfactants on extraction and determination of polyphenolic compounds and antioxidant capacity of fruits extracts. PLoS One, 8, e57353.

    Article  CAS  Google Scholar 

  16. Sharma, S., Kori, S., & Parmar, A. (2015). Surfactant mediated extraction of total phenolic content (TPC) and antioxidants from fruits juices. Food Chemistry, 185, 284–288.

    Article  CAS  Google Scholar 

  17. Ng, H. S., Tan, C., Chen, S., Mokhtar, M., Ariff, A., & Ling, T. (2011). Primary capture of cyclodextrin glycosyltransferase derived from Bacillus cereus by aqueous two phase system. Separation and Purification Technology, 81, 318–324.

    Article  CAS  Google Scholar 

  18. Zhang, D., Zu, T., Fu, Y., Wang, W., Zhang, L., Luo, M., Mu, F., Yao, X., & Duan, M. (2013). Aqueous two-phase extraction and enrichment of two main flavonoids from pigeon pea roots and the antioxidant activity. Separation and Purification Technology, 102, 26–33.

    Article  CAS  Google Scholar 

  19. Ng, H. S., Tan, G., Lee, K.-H., Zimmermann, W., Yim, H. S., & Lan, J. C.-W. (2018). Direct recovery of mangostins from Garcinia mangostona pericarps using cellulas-assisted aqeuous micellar biphasic system with recyclable surfactant. Journal of Bioscience and Bioengineering, 126(4), 507–513.

    Article  CAS  Google Scholar 

  20. Tan, G., Zimmermann, W., Lee, K.-H., Lan, J. C.-W., Yim, H. S., Ling, T., & Ng, H. S. (2017). Recovery of mangostins from Garcinia mangostana peels with an aqueous micellar biphasic system. Food and Bioproducts Processing, 102, 233–240.

    Article  CAS  Google Scholar 

  21. Ho, S. L., Lan, J. C.-W., Tan, J. S., Yim, H. S., & Ng, H. S. (2017). Aqueous biphasic system for the partial purification of Bacillus subtilis carboxymethyl cellulase. Process Biochemistry, 58, 276–281.

    Article  CAS  Google Scholar 

  22. Chuo, S. C., Mohd-Setapar, S. H., Mohamad-Aziz, S. N., & Starov, V. M. (2014). A new method of extraction of amoxicillin using mixed reverse micelles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 460, 137–144.

    Article  CAS  Google Scholar 

  23. Bi, W., Tian, M., & Row, K. H. (2011). Extraction and concentration of tanshinones in Salvia miltiorrhiza Bunge by task-specific non-ionic surfactant assistance. Food Chemistry, 126(4), 1985–1990.

    Article  CAS  Google Scholar 

  24. Chat, O. A., Najar, M. H., Mir, M. A., Rather, G. M., & Dar, A. A. (2011). Effects of surfactant micelles on solubilization and DPPH radical scavenging activity of Rutin. Journal of Colloid and Interface Science, 355(1), 140–149.

    Article  CAS  Google Scholar 

  25. Almeida, M. R., Passos, H., Pereira, M. M., Lima, Á. S., Coutinho, J. A. P., & Freire, M. G. (2014). Ionic liquids as additives to enhance the extraction of antioxidants in aqueous two-phase systems. Separation and Purification Technology, 128, 1–10.

    Article  CAS  Google Scholar 

  26. Oelmeier, S. A., Dismer, F., & Hubbuch, J. (2012). Molecular dynamics simulations on aqueous two-phase systems - single PEG-molecules in solution. BMC Biophysics, 5, 14.

    Article  CAS  Google Scholar 

  27. Chandrasekhar, J., Sonika, G., Madhusudhan, M. C., & Raghavarao, K. S. M. S. (2015). Differential partitioning of betacyanins and betaxanthins employing aqueous two phase extraction. Journal of Food Engineering, 144, 156–163.

    Article  CAS  Google Scholar 

  28. Xavier, L., Freire, M., Vidal-Tato, I., & González-Álvarez, J. (2015). Application of aqueous two phase systems based on polyethylene glycol and sodium citrate for the recovery of phenolic compounds from Eucalyptus wood. Maderas: Ciencia y Tecnologia, 17, 345–354.

    CAS  Google Scholar 

  29. Mohamed Ali, S., Ling, T. C., Muniandy, S., Tan, Y. S., Raman, J., & Sabaratnam, V. (2014). Recovery and partial purification of fibrinolytic enzymes of Auricularia polytricha (Mont.) Sacc by an aqueous two-phase system. Separation and Purification Technology, 122, 359–366.

    Article  CAS  Google Scholar 

  30. Amid, M., Manap, Y., & Zohdi, N. K. (2014). A novel aqueous two phase system composed of a thermo-separating polymer and an organic solvent for purification of thermo-acidic amylase enzyme from red pitaya (Hylocereus polyrhizus) peel. Molecules, 19(5), 6635–6650.

    Article  Google Scholar 

  31. Wan, P. K., Lan, J. C.-W., Chen, P.-W., Tan, J. S., & Ng, H. S. (2018). Recovery of intracellular ectoine from Halomonas salina cells with poly(propylene) glycol/salt aqueous biphasic system. Journal of the Taiwan Institute of Chemical Engineers, 82, 28–32.

    Article  CAS  Google Scholar 

  32. Ng, H. S., Ooi, C. W., Show, P. L., Tan, C. P., Ariff, A., Moktar, M. N., Ng, E.-P., & Ling, T. C. (2014). Recovery of Bacillus cereus cyclodextrin glycosyltransferase using ionic liquid-based aqueous two-phase system. Separation and Purification Technology, 138, 28–33.

    Article  CAS  Google Scholar 

  33. Shahid,i F., & Yeo, J. (2016). Insoluble-bound phenolics in food. Molecules, 21(9), 1216.

  34. Rahimpour, F., & Baharvand, A. (2019). Phase equilibrium in aqueous two-phase systems containing poly (propylene glycol) and sodium citrate at different pH. World Academy of Science, Engineering and Technology, 59, 126–130.

    Google Scholar 

  35. Li, S., & Cao, X. (2014). Extraction of tea polysaccharides (TPS) using anionic reverse micellar system. Separation and Purification Technology, 122, 306–314.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the UCSI University Pioneer Scientist Incentive Funds under grant number [PROJ-2019-In-FAS-064] and Industry Grant (Proj-In-ALPHA-003) from Alpha Active Industries Sdn Bhd, Selangor, Malaysia; with laboratory support from Faculty of Applied Sciences, UCSI University, Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hip Seng Yim or John Chi-Wei Lan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ng, HS., Kee, P.E., Tan, G.YT. et al. Surfactant as an Additive for the Recovery of Potent Antioxidants from Garcinia mangostana Pericarps Using a Polymer/Salt Aqueous Biphasic System. Appl Biochem Biotechnol 191, 273–283 (2020). https://doi.org/10.1007/s12010-020-03284-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03284-z

Keywords

Navigation