Lopatko, K. G., Melnichuk, M. D., Aftandilyants, Y. G., Gonchar, E. N., Boretskij, V. F., Veklich, A. N., Zakharchenko, S. N., Tugay, T. I., Tugay, A. V., & Trach, V. V. (2013). Obtaining of metallic nanoparticles by plasma-erosion electrical discharges in liquid mediums for biological application. Annals of Warsaw University of Life Sciences-SGGW. Agriculture, 61, 105–115.
Google Scholar
Shcherbakova, E. N., Shcherbakov, A. V., Andronov, E. E., Gonchar, L. N., Kalenskaya, S. M., & Chebotar, V. K. (2017). Combined pre-seed treatment with microbial inoculants and Mo nanoparticles changes composition of root exudates and rhizosphere microbiome structure of chickpea (Cicer arietinum L.) plants. Symbiosis, 73(1), 57–69. https://doi.org/10.1007/s13199-016-0472-1.
CAS
Article
Google Scholar
Panyuta, O., Belava, V., Fomaidi, S., Kalinichenko, O., Volkogon, M., & Taran, N. (2016). The effect of pre-sowing seed treatment with metal nanoparticles on the formation of the defensive reaction of wheat seedlings infected with the eyespot causal agent. Nanoscale Research Letters, 11(1), 92. https://doi.org/10.1186/s11671-016-1305-0.
CAS
Article
PubMed
PubMed Central
Google Scholar
Lopatko, K., Aftandiliants, Y., Veklich, A., Boretskij, V., Taran, N., Batsmanova, L., Trach, V., & Tugai, T. (2015). Enrichment of colloidal solutions by nanoparticles in underwater spark discharge. Problems of atomic science and technology. Series: Plasma Physics, 21(1), 267–270.
Google Scholar
Hossain, A., Abdallah, Y., Ali, M. A., Masum, M. M., Li, B., Sun, G., Meng, Y., Wang, Y., & An, Q. (2019). Lemon-fruit-based green synthesis of zinc oxide nanoparticles and titanium dioxide nanoparticles against soft rot bacterial pathogen Dickeya dadantii. Biomolecules, 9(12), E863. https://doi.org/10.3390/biom9120863.
CAS
Article
PubMed
Google Scholar
Ogunyemi, S. O., Zhang, F., Abdallah, Y., Zhang, M., Wang, Y., Sun, G., Qiu, W., & Li, B. (2019). Biosynthesis and characterization of magnesium oxide and manganese dioxide nanoparticles using Matricaria chamomilla L. extract and its inhibitory effect on Acidovorax oryzae strain RS-2. Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 2230–2239. https://doi.org/10.1080/21691401.2019.1622552.
CAS
Article
PubMed
Google Scholar
Zuverza-Mena, N., Armendariz, R., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2016). Effects of silver nanoparticles on radish sprouts: root growth reduction and modifications in the nutritional value. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.00090.
Mohammadi, H., Amani-Ghadim, A. R., Matin, A. A., & Ghorbanpour, M. (2020). Fe0 nanoparticles improve physiological and antioxidative attributes of sunflower (Helianthus annuus) plants grown in soil spiked with hexavalent chromium. 3 Biotech, 10(19). https://doi.org/10.1007/s13205-019-2002-3.
Kravchenko, Y., Lopatko, R., Aftandilyants, Y., & Trach, V. (2015). The effect of colloidal nanoparticles on plant growth, phytotoxicity and crop yields. Fertilizer Technology, 1, synthesis, 689–724.
Google Scholar
Taran, N., Batsmanova, L., Kosyk, O., Smirnov, O., Kovalenko, M., Honchar, L., & Okanenko, A. (2016). Colloidal nanomolybdenum influence upon the antioxidative reaction of chickpea plants (Cicer arietinum L.). Nanoscale Research Letters, 11(1), H. 476. https://doi.org/10.1186/s11671-016-1690-4.
CAS
Article
Google Scholar
Tugay, T. I., Trach, V. V., Lopatko, K. G., Tugay, A. V., & Nkonechnaya, L. T. (2015). Influence of biologically functional substances on the growth of wheat and the composition of the microflora of its rhizosphere. Factors in the experimental evolution of organisms. Collection of scientific works, 17, 258–260.
Google Scholar
Chaturvedi, V. K., Agarwal, S., Gupta, K. K., Ramteke, P. W., & Singh, M. P. (2018). Medicinal mushroom: boon for therapeutic applications. 3 Biotech, 8(8), 334. https://doi.org/10.1007/s13205-018-1358-0.
Article
PubMed
PubMed Central
Google Scholar
Hu, Y., Sheng, Y., Yu, M., Li, K., Ren, G., Xu, X., & Qu, J. (2016). Antioxidant activity of Inonotus obliquus polysaccharide and its amelioration for chronic pancreatitis in mice. International Journal of Biological Macromolecules, 87, 348–356. https://doi.org/10.1016/j.ijbiomac.2016.03.006.
CAS
Article
PubMed
Google Scholar
Zheng, W., Zhao, Y., Zheng, X., Liu, Y., Pan, S., Dai, Y., & Liu, F. (2011). Production of antioxidant and antitumor metabolites by submerged cultures of Inonotus obliquus cocultured with Phellinus punctatus. Applied Microbiology and Biotechnology, 89(1), 157–167. https://doi.org/10.1007/s00253-010-2846-2.
CAS
Article
PubMed
Google Scholar
Diao, B. Z., Jin, W. R., & Yu, X. J. (2014). Protective effect of polysaccharides from Inonotus obliquus on streptozotocin-induced diabetic symptoms and their potential mechanisms in rats. Evidence-Based Complementary and Alternative Medicine, 2014, 841496. https://doi.org/10.1155/2014/841496.
Article
PubMed
PubMed Central
Google Scholar
Zheng, W., Miao, K., Liu, Y., Zhao, Y., Zhang, M., Pan, S., & Dai, Y. (2010). Chemical diversity of biologically active metabolites in the sclerotia of Inonotus obliquus and submerged culture strategies for up-regulating their production. Applied Microbiology and Biotechnology, 87(4), 1237–1254. https://doi.org/10.1007/s00253-010-2682-4.
CAS
Article
PubMed
Google Scholar
Zheng, W., Gu, Q., Chen, C., Yang, S. Z., Wei, J. C., & Chu, C. C. (2007). Aminophenols and mold-water-extracts affect the accumulation of flavonoids and their antioxidant activity in cultured mycelia of Inonotus obliquus. Mycosystema, 26(3), 414–425.
CAS
Google Scholar
Xu, X., Wu, Y., & Chen, H. (2011). Comparative antioxidative characteristics of polysaccharide-enriched extracts from natural sclerotia and cultured mycelia in submerged fermentation of Inonotus obliquus. Food Chemistry, 127(1), 74–79. https://doi.org/10.1016/j.foodchem.2010.12.090.
CAS
Article
Google Scholar
Balandaykin, M. E., & Zmitrovich, I. V. (2015). Review on Chaga medicinal mushroom, Inonotus obliquus (higher Basidiomycetes): Realm of medicinal applications and approaches on estimating its resource potential. International Journal of Medicinal Mushroom, 17(2), 95–104. https://doi.org/10.1615/IntJMedMushrooms.v17.i2.10.
Article
Google Scholar
Tang, Y. J., Zhang, W., Liu, R. S., Zhu, L. W., & Zhong, J. J. (2011). Scale-up study on the fed-batch fermentation of Ganoderma lucidum for the hyperproduction of ganoderic acid and Ganoderma polysaccharides. Process Biochemistry, 46(1), 404–408. https://doi.org/10.1016/j.procbio.2010.08.013.
CAS
Article
Google Scholar
Babitskaya, V. G., Scherba, V. V., Mitropolskaya, N. Y., & Bisko, N. A. (2000). Exopolysaccharides of some medicinal mushrooms: production and composition. International Journal of Medicinal Mushroom, 2(1), 51–54. https://doi.org/10.1615/IntJMedMushr.v2.i1.50.
CAS
Article
Google Scholar
Pękal, A., & Pyrzynska, K. (2014). Evaluation of aluminium complexation reaction for flavonoid content assay. Food Analytical Methods, 7(9), 1776–1782. https://doi.org/10.1007/s12161-014-9814-x.
Article
Google Scholar
Poyedinok, N., Mykhaylova, O., Tugay, T., Tugay, A., Negriyko, A., & Dudka, I. (2015). Effect of light wavelengths and coherence on growth, enzymes activity, and melanin accumulation of liquid-cultured Inonotus obliquus (Ach.: Pers.) Pilát. Applied Biochemistry and Biotechnology, 176(2), 333–343.
CAS
Article
Google Scholar
Yang, J., Cao, W., & Rui, Y. (2017). Interactions between nanoparticles and plants: phytotoxicity and defense mechanisms. Journal of Plant Interactions, 12(1), 158–169. https://doi.org/10.1080/17429145.2017.1310944.
CAS
Article
Google Scholar
Yan, A., & Chen, Z. (2019). Impacts of silver nanoparticles on plants: a focus on the phytotoxicity and underlying mechanism. International Journal of Molecular Sciences, 20(5), 1003. https://doi.org/10.3390/ijms20051003.
CAS
Article
PubMed Central
Google Scholar
Thuesombat, P., Hannongbua, S., Akasit, S., & Chadchawan, S. (2014). Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicology and Environmental Safety, 104, 302–309. https://doi.org/10.1016/j.ecoenv.2014.03.022.
CAS
Article
PubMed
Google Scholar
Alananbeh, K. M., Al-Refaee, W. J., & Al-Qodah, Z. (2017). Antifungal effect of silver nanoparticles on selected fungi isolated from raw and waste water. Indian Journal of Pharmaceutical Sciences, 79(4), 559–567. https://doi.org/10.4172/pharmaceutical-sciences.1000263.
Article
Google Scholar
Sheykhbaglou, R., Sedghi, M., Shishevan, M. T., & Sharifi, R. S. (2010). Effects of nano-iron oxide particles on agronomic traits of soybean. Notulae Scientia Biologicae, 2(2), 112–113.
Article
Google Scholar
Reshetnikov, S. V., & Tan, K. K. (2001). Higher Basidiomycota as a source of antitumor and immunostimulating polysaccharides. International Journal of Medicinal Mushroom, 3(4), 361–394. https://doi.org/10.1615/IntJMedMushr.v3.i4.80.
CAS
Article
Google Scholar
Barshstein, V. Y., & Krupoderova, T. A. (2014). Results, problems, prospects. In V. P. Volkova (Ed.), Successes and problems of modern oncology (p. 108). Novosibirsk: SibAK.
Google Scholar
Babitskaya, V. G., Shcherba, V. V., & Lkonnikova, N. V. (2000). Melanin complex of the fungus Inonotus obliquus. Applied Biochemistry and Microbiology, 36(4), 377–381. https://doi.org/10.1007/bf02738046.
Article
Google Scholar
Falcone Ferreyra, M. L., Rius, S., & Casati, P. (2012). Flavonoids: biosynthesis, biological functions, and biotechnological applications. Frontiers in Plant Science, 3, 222. https://doi.org/10.3389/fpls.2012.00222.
CAS
Article
PubMed
PubMed Central
Google Scholar
Han, R. M., Zhang, J. P., & Skibsted, L. H. (2012). Reaction dynamics of flavonoids and carotenoids as antioxidants. Molecules, 17(2), 2140–2160. https://doi.org/10.3390/molecules17022140.
CAS
Article
PubMed
PubMed Central
Google Scholar
Brunetti, C., Di Ferdinando, M., Fini, A., Pollastri, S., & Tattini, M. (2013). Flavonoids as antioxidants and developmental regulators: relative significance in plants and humans. International Journal of Molecular Sciences, 14(2), 3540–3555. https://doi.org/10.3390/ijms14023540.
CAS
Article
PubMed
PubMed Central
Google Scholar
Tiwari, S. C., & Husain, N. (2017). Biological activities and role of flavonoids in human health–a. Indian Journal of Scientific Research, 12(2), 193–196.
CAS
Google Scholar
Shojaie, B., Mostajeran, A., & Ghanadian, M. (2016). Flavonoid dynamic responses to different drought conditions: amount, type, and localization of flavonols in roots and shoots of Arabidopsis thaliana L. Turkish Journal of Biology, 40(3), 612–622. https://doi.org/10.3906/biy-1505-2.
CAS
Article
Google Scholar
Zheng, W., Miao, K., Zhang, Y., Pan, S., Zhang, M., & Jiang, H. (2009). Nitric oxide mediates the fungal-elicitor-enhanced biosynthesis of antioxidant polyphenols in submerged cultures of Inonotus obliquus. Microbiology, 155(10), 3440–3448. https://doi.org/10.1099/mic.0.030650-0.
CAS
Article
PubMed
Google Scholar
Chayaprasert, W., & Sompornpailin, K. (2019). Effects of modulated concentration of ZnO nanoparticles on enhancing biosynthesis of metabolites and protecting plant membrane. CMUJ NS Special Issue on Food and Applied Bioscience to Innovation and Technology, 18(2), 167–177.
Google Scholar
Prados-Rosales, R., Toriola, S., Nakouzi, A., Chatterjee, S., Stark, R., Gerfen, G., Tumpowsky, P., Dadachova, E., & Casadevall, A. (2015). Structural characterization of melanin pigments from commercial preparations of the edible mushroom Auricularia auricula. Journal of Agricultural and Food Chemistry, 63(33), 7326–7332. https://doi.org/10.1021/acs.jafc.5b02713.
CAS
Article
PubMed
PubMed Central
Google Scholar
Pombeiro-Sponchiado, S. R., Sousa, G. S., Andrade, J. C. R., Lisboa, H. F., & Gonçalves, R. C. R. (2017). Melanin. Production of melanin pigment by Fungi and its biotechnological applications. In M. Blumenberg (Ed.). (pp. 47–66). Intech.
https://doi.org/10.5772/67375.
Allard-Vannier, É., Hervé-Aubert, K., Kaaki, K., Blondy, T., Shebanova, A., Shaitan, K. V., Ignatova, A. A., Saboungi, M. L., Feofanov, A. V., & Chourpa, I. (2017). Folic acid-capped PEGylated magnetic nanoparticles enter cancer cells mostly via clathrin-dependent endocytosis. Biochimica et Biophysica Acta (BBA)-General Subjects, 1861(6), 1578–1586. https://doi.org/10.1016/j.bbagen.2016.11.045.
CAS
Article
Google Scholar
Audinot, J.-N., Georgantzopoulou, A., Piret, J. P., Gutleb, A. C., Dowsett, D., Migeon, H. N., & Hoffmann, L. (2013). Identification and localization of nanoparticles in tissues by mass spectrometry. Surface and Interface Analysis, 45(1), 230–233. https://doi.org/10.1002/sia.5099.
CAS
Article
Google Scholar
Kon’kova, Т. V., Оlennikov, D. N., Penzina, Т. А., Ganenkо, Т. V., Sukhov, B. G., & Тrofimov, B. А. (2016). Synthesis and structure of nanocomposit of argentum and melanin complex of the chaga mushroom Inonotus obliquus. Geography and Natural Resources, 6, 164–168. https://doi.org/10.21782/GIPR0206-1619-2016-6(164-168.
Article
Google Scholar