Skip to main content

Effect of Colloidal Metal Nanoparticles on Biomass, Polysaccharides, Flavonoids, and Melanin Accumulation in Medicinal Mushroom Inonotus obliquus (Ach.:Pers.) Pilát

Abstract

The article explores effect of colloidal nanoparticles (NPs) of Ag, Fe, and Mg metals on the growth activity of the medicinal mushroom Inonotus obliquus (Ach.:Pers.) Pilát and the synthesis of biologically active compounds (polysaccharides, flavonoids, and melanins). It was found that all the studied NPs stimulated growth activity. AgNPs inhibited polysaccharide and flavonoid synthesis, and stimulated melanin synthesis by 140%. Using MgNPs was effective to increase the level of accumulation of endopolysaccharides, flavonoids, and melanin pigments. FeNPs significantly increased the yield of endopolysaccharides. This effect should be used for biosynthesis stimulation for polysaccharides, flavonoids, and melanins obtaining from I. obliquus cultivated in vitro. The results demonstrate the potential of the use of metal colloidal solutions NPs for the development of environmentally friendly and effective biotechnology to produce biologically active compounds by medicinal macromycete I. obliquus.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Lopatko, K. G., Melnichuk, M. D., Aftandilyants, Y. G., Gonchar, E. N., Boretskij, V. F., Veklich, A. N., Zakharchenko, S. N., Tugay, T. I., Tugay, A. V., & Trach, V. V. (2013). Obtaining of metallic nanoparticles by plasma-erosion electrical discharges in liquid mediums for biological application. Annals of Warsaw University of Life Sciences-SGGW. Agriculture, 61, 105–115.

    Google Scholar 

  2. Shcherbakova, E. N., Shcherbakov, A. V., Andronov, E. E., Gonchar, L. N., Kalenskaya, S. M., & Chebotar, V. K. (2017). Combined pre-seed treatment with microbial inoculants and Mo nanoparticles changes composition of root exudates and rhizosphere microbiome structure of chickpea (Cicer arietinum L.) plants. Symbiosis, 73(1), 57–69. https://doi.org/10.1007/s13199-016-0472-1.

    CAS  Article  Google Scholar 

  3. Panyuta, O., Belava, V., Fomaidi, S., Kalinichenko, O., Volkogon, M., & Taran, N. (2016). The effect of pre-sowing seed treatment with metal nanoparticles on the formation of the defensive reaction of wheat seedlings infected with the eyespot causal agent. Nanoscale Research Letters, 11(1), 92. https://doi.org/10.1186/s11671-016-1305-0.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Lopatko, K., Aftandiliants, Y., Veklich, A., Boretskij, V., Taran, N., Batsmanova, L., Trach, V., & Tugai, T. (2015). Enrichment of colloidal solutions by nanoparticles in underwater spark discharge. Problems of atomic science and technology. Series: Plasma Physics, 21(1), 267–270.

    Google Scholar 

  5. Hossain, A., Abdallah, Y., Ali, M. A., Masum, M. M., Li, B., Sun, G., Meng, Y., Wang, Y., & An, Q. (2019). Lemon-fruit-based green synthesis of zinc oxide nanoparticles and titanium dioxide nanoparticles against soft rot bacterial pathogen Dickeya dadantii. Biomolecules, 9(12), E863. https://doi.org/10.3390/biom9120863.

    CAS  Article  PubMed  Google Scholar 

  6. Ogunyemi, S. O., Zhang, F., Abdallah, Y., Zhang, M., Wang, Y., Sun, G., Qiu, W., & Li, B. (2019). Biosynthesis and characterization of magnesium oxide and manganese dioxide nanoparticles using Matricaria chamomilla L. extract and its inhibitory effect on Acidovorax oryzae strain RS-2. Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 2230–2239. https://doi.org/10.1080/21691401.2019.1622552.

    CAS  Article  PubMed  Google Scholar 

  7. Zuverza-Mena, N., Armendariz, R., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2016). Effects of silver nanoparticles on radish sprouts: root growth reduction and modifications in the nutritional value. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.00090.

  8. Mohammadi, H., Amani-Ghadim, A. R., Matin, A. A., & Ghorbanpour, M. (2020). Fe0 nanoparticles improve physiological and antioxidative attributes of sunflower (Helianthus annuus) plants grown in soil spiked with hexavalent chromium. 3 Biotech, 10(19). https://doi.org/10.1007/s13205-019-2002-3.

  9. Kravchenko, Y., Lopatko, R., Aftandilyants, Y., & Trach, V. (2015). The effect of colloidal nanoparticles on plant growth, phytotoxicity and crop yields. Fertilizer Technology, 1, synthesis, 689–724.

    Google Scholar 

  10. Taran, N., Batsmanova, L., Kosyk, O., Smirnov, O., Kovalenko, M., Honchar, L., & Okanenko, A. (2016). Colloidal nanomolybdenum influence upon the antioxidative reaction of chickpea plants (Cicer arietinum L.). Nanoscale Research Letters, 11(1), H. 476. https://doi.org/10.1186/s11671-016-1690-4.

    CAS  Article  Google Scholar 

  11. Tugay, T. I., Trach, V. V., Lopatko, K. G., Tugay, A. V., & Nkonechnaya, L. T. (2015). Influence of biologically functional substances on the growth of wheat and the composition of the microflora of its rhizosphere. Factors in the experimental evolution of organisms. Collection of scientific works, 17, 258–260.

    Google Scholar 

  12. Chaturvedi, V. K., Agarwal, S., Gupta, K. K., Ramteke, P. W., & Singh, M. P. (2018). Medicinal mushroom: boon for therapeutic applications. 3 Biotech, 8(8), 334. https://doi.org/10.1007/s13205-018-1358-0.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hu, Y., Sheng, Y., Yu, M., Li, K., Ren, G., Xu, X., & Qu, J. (2016). Antioxidant activity of Inonotus obliquus polysaccharide and its amelioration for chronic pancreatitis in mice. International Journal of Biological Macromolecules, 87, 348–356. https://doi.org/10.1016/j.ijbiomac.2016.03.006.

    CAS  Article  PubMed  Google Scholar 

  14. Zheng, W., Zhao, Y., Zheng, X., Liu, Y., Pan, S., Dai, Y., & Liu, F. (2011). Production of antioxidant and antitumor metabolites by submerged cultures of Inonotus obliquus cocultured with Phellinus punctatus. Applied Microbiology and Biotechnology, 89(1), 157–167. https://doi.org/10.1007/s00253-010-2846-2.

    CAS  Article  PubMed  Google Scholar 

  15. Diao, B. Z., Jin, W. R., & Yu, X. J. (2014). Protective effect of polysaccharides from Inonotus obliquus on streptozotocin-induced diabetic symptoms and their potential mechanisms in rats. Evidence-Based Complementary and Alternative Medicine, 2014, 841496. https://doi.org/10.1155/2014/841496.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zheng, W., Miao, K., Liu, Y., Zhao, Y., Zhang, M., Pan, S., & Dai, Y. (2010). Chemical diversity of biologically active metabolites in the sclerotia of Inonotus obliquus and submerged culture strategies for up-regulating their production. Applied Microbiology and Biotechnology, 87(4), 1237–1254. https://doi.org/10.1007/s00253-010-2682-4.

    CAS  Article  PubMed  Google Scholar 

  17. Zheng, W., Gu, Q., Chen, C., Yang, S. Z., Wei, J. C., & Chu, C. C. (2007). Aminophenols and mold-water-extracts affect the accumulation of flavonoids and their antioxidant activity in cultured mycelia of Inonotus obliquus. Mycosystema, 26(3), 414–425.

    CAS  Google Scholar 

  18. Xu, X., Wu, Y., & Chen, H. (2011). Comparative antioxidative characteristics of polysaccharide-enriched extracts from natural sclerotia and cultured mycelia in submerged fermentation of Inonotus obliquus. Food Chemistry, 127(1), 74–79. https://doi.org/10.1016/j.foodchem.2010.12.090.

    CAS  Article  Google Scholar 

  19. Balandaykin, M. E., & Zmitrovich, I. V. (2015). Review on Chaga medicinal mushroom, Inonotus obliquus (higher Basidiomycetes): Realm of medicinal applications and approaches on estimating its resource potential. International Journal of Medicinal Mushroom, 17(2), 95–104. https://doi.org/10.1615/IntJMedMushrooms.v17.i2.10.

    Article  Google Scholar 

  20. Tang, Y. J., Zhang, W., Liu, R. S., Zhu, L. W., & Zhong, J. J. (2011). Scale-up study on the fed-batch fermentation of Ganoderma lucidum for the hyperproduction of ganoderic acid and Ganoderma polysaccharides. Process Biochemistry, 46(1), 404–408. https://doi.org/10.1016/j.procbio.2010.08.013.

    CAS  Article  Google Scholar 

  21. Babitskaya, V. G., Scherba, V. V., Mitropolskaya, N. Y., & Bisko, N. A. (2000). Exopolysaccharides of some medicinal mushrooms: production and composition. International Journal of Medicinal Mushroom, 2(1), 51–54. https://doi.org/10.1615/IntJMedMushr.v2.i1.50.

    CAS  Article  Google Scholar 

  22. Pękal, A., & Pyrzynska, K. (2014). Evaluation of aluminium complexation reaction for flavonoid content assay. Food Analytical Methods, 7(9), 1776–1782. https://doi.org/10.1007/s12161-014-9814-x.

    Article  Google Scholar 

  23. Poyedinok, N., Mykhaylova, O., Tugay, T., Tugay, A., Negriyko, A., & Dudka, I. (2015). Effect of light wavelengths and coherence on growth, enzymes activity, and melanin accumulation of liquid-cultured Inonotus obliquus (Ach.: Pers.) Pilát. Applied Biochemistry and Biotechnology, 176(2), 333–343.

    CAS  Article  Google Scholar 

  24. Yang, J., Cao, W., & Rui, Y. (2017). Interactions between nanoparticles and plants: phytotoxicity and defense mechanisms. Journal of Plant Interactions, 12(1), 158–169. https://doi.org/10.1080/17429145.2017.1310944.

    CAS  Article  Google Scholar 

  25. Yan, A., & Chen, Z. (2019). Impacts of silver nanoparticles on plants: a focus on the phytotoxicity and underlying mechanism. International Journal of Molecular Sciences, 20(5), 1003. https://doi.org/10.3390/ijms20051003.

    CAS  Article  PubMed Central  Google Scholar 

  26. Thuesombat, P., Hannongbua, S., Akasit, S., & Chadchawan, S. (2014). Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicology and Environmental Safety, 104, 302–309. https://doi.org/10.1016/j.ecoenv.2014.03.022.

    CAS  Article  PubMed  Google Scholar 

  27. Alananbeh, K. M., Al-Refaee, W. J., & Al-Qodah, Z. (2017). Antifungal effect of silver nanoparticles on selected fungi isolated from raw and waste water. Indian Journal of Pharmaceutical Sciences, 79(4), 559–567. https://doi.org/10.4172/pharmaceutical-sciences.1000263.

    Article  Google Scholar 

  28. Sheykhbaglou, R., Sedghi, M., Shishevan, M. T., & Sharifi, R. S. (2010). Effects of nano-iron oxide particles on agronomic traits of soybean. Notulae Scientia Biologicae, 2(2), 112–113.

    Article  Google Scholar 

  29. Reshetnikov, S. V., & Tan, K. K. (2001). Higher Basidiomycota as a source of antitumor and immunostimulating polysaccharides. International Journal of Medicinal Mushroom, 3(4), 361–394. https://doi.org/10.1615/IntJMedMushr.v3.i4.80.

    CAS  Article  Google Scholar 

  30. Barshstein, V. Y., & Krupoderova, T. A. (2014). Results, problems, prospects. In V. P. Volkova (Ed.), Successes and problems of modern oncology (p. 108). Novosibirsk: SibAK.

    Google Scholar 

  31. Babitskaya, V. G., Shcherba, V. V., & Lkonnikova, N. V. (2000). Melanin complex of the fungus Inonotus obliquus. Applied Biochemistry and Microbiology, 36(4), 377–381. https://doi.org/10.1007/bf02738046.

    Article  Google Scholar 

  32. Falcone Ferreyra, M. L., Rius, S., & Casati, P. (2012). Flavonoids: biosynthesis, biological functions, and biotechnological applications. Frontiers in Plant Science, 3, 222. https://doi.org/10.3389/fpls.2012.00222.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Han, R. M., Zhang, J. P., & Skibsted, L. H. (2012). Reaction dynamics of flavonoids and carotenoids as antioxidants. Molecules, 17(2), 2140–2160. https://doi.org/10.3390/molecules17022140.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Brunetti, C., Di Ferdinando, M., Fini, A., Pollastri, S., & Tattini, M. (2013). Flavonoids as antioxidants and developmental regulators: relative significance in plants and humans. International Journal of Molecular Sciences, 14(2), 3540–3555. https://doi.org/10.3390/ijms14023540.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Tiwari, S. C., & Husain, N. (2017). Biological activities and role of flavonoids in human health–a. Indian Journal of Scientific Research, 12(2), 193–196.

    CAS  Google Scholar 

  36. Shojaie, B., Mostajeran, A., & Ghanadian, M. (2016). Flavonoid dynamic responses to different drought conditions: amount, type, and localization of flavonols in roots and shoots of Arabidopsis thaliana L. Turkish Journal of Biology, 40(3), 612–622. https://doi.org/10.3906/biy-1505-2.

    CAS  Article  Google Scholar 

  37. Zheng, W., Miao, K., Zhang, Y., Pan, S., Zhang, M., & Jiang, H. (2009). Nitric oxide mediates the fungal-elicitor-enhanced biosynthesis of antioxidant polyphenols in submerged cultures of Inonotus obliquus. Microbiology, 155(10), 3440–3448. https://doi.org/10.1099/mic.0.030650-0.

    CAS  Article  PubMed  Google Scholar 

  38. Chayaprasert, W., & Sompornpailin, K. (2019). Effects of modulated concentration of ZnO nanoparticles on enhancing biosynthesis of metabolites and protecting plant membrane. CMUJ NS Special Issue on Food and Applied Bioscience to Innovation and Technology, 18(2), 167–177.

    Google Scholar 

  39. Prados-Rosales, R., Toriola, S., Nakouzi, A., Chatterjee, S., Stark, R., Gerfen, G., Tumpowsky, P., Dadachova, E., & Casadevall, A. (2015). Structural characterization of melanin pigments from commercial preparations of the edible mushroom Auricularia auricula. Journal of Agricultural and Food Chemistry, 63(33), 7326–7332. https://doi.org/10.1021/acs.jafc.5b02713.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Pombeiro-Sponchiado, S. R., Sousa, G. S., Andrade, J. C. R., Lisboa, H. F., & Gonçalves, R. C. R. (2017). Melanin. Production of melanin pigment by Fungi and its biotechnological applications. In M. Blumenberg (Ed.). (pp. 47–66). Intech. https://doi.org/10.5772/67375.

  41. Allard-Vannier, É., Hervé-Aubert, K., Kaaki, K., Blondy, T., Shebanova, A., Shaitan, K. V., Ignatova, A. A., Saboungi, M. L., Feofanov, A. V., & Chourpa, I. (2017). Folic acid-capped PEGylated magnetic nanoparticles enter cancer cells mostly via clathrin-dependent endocytosis. Biochimica et Biophysica Acta (BBA)-General Subjects, 1861(6), 1578–1586. https://doi.org/10.1016/j.bbagen.2016.11.045.

    CAS  Article  Google Scholar 

  42. Audinot, J.-N., Georgantzopoulou, A., Piret, J. P., Gutleb, A. C., Dowsett, D., Migeon, H. N., & Hoffmann, L. (2013). Identification and localization of nanoparticles in tissues by mass spectrometry. Surface and Interface Analysis, 45(1), 230–233. https://doi.org/10.1002/sia.5099.

    CAS  Article  Google Scholar 

  43. Kon’kova, Т. V., Оlennikov, D. N., Penzina, Т. А., Ganenkо, Т. V., Sukhov, B. G., & Тrofimov, B. А. (2016). Synthesis and structure of nanocomposit of argentum and melanin complex of the chaga mushroom Inonotus obliquus. Geography and Natural Resources, 6, 164–168. https://doi.org/10.21782/GIPR0206-1619-2016-6(164-168.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Poyedinok.

Ethics declarations

This article does not contain any studies with animals performed by any of the authors.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Poyedinok, N., Mykhaylova, O., Sergiichuk, N. et al. Effect of Colloidal Metal Nanoparticles on Biomass, Polysaccharides, Flavonoids, and Melanin Accumulation in Medicinal Mushroom Inonotus obliquus (Ach.:Pers.) Pilát. Appl Biochem Biotechnol 191, 1315–1325 (2020). https://doi.org/10.1007/s12010-020-03281-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03281-2

Keywords

  • Inonotus obliquus
  • Metal colloidal nanoparticles
  • Growth activity
  • Polysaccharides
  • Flavonoids
  • Melanin