Skip to main content
Log in

Mutagenesis for Improvement of Activity and Stability of Prolyl Aminopeptidase from Aspergillus oryzae

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, the prokaryotic expression system of Escherichia coli was used to modify prolyl aminopeptidase derived from Aspergillus oryzae JN-412 (AoPAP) via random mutagenesis and site-directed saturation mutagenesis. A random mutant library with a capacity of approximately 3000 mutants was compiled using error-prone polymerase chain reaction, and nonconservative amino acids within 3 Å of the substrate L-proline-p-nitroaniline were selected as site-directed saturation mutagenesis sites via homologous simulation and molecular docking of AoPAP. Variants featuring high catalytic efficiency were screened by a high-throughput screening method. The specific activities of the variants of 3D9, C185V, and Y393W were 127 U mg−1, 156 U mg−1, and 120 U mg−1, respectively, which were 27%, 56%, and 20% higher than those of the wild type, with a value of 100 U mg−1. The half-life of thermostability of the mutant 3D9 was 4.5 h longer than that of the wild type at 50 °C. The mutant C185V improved thermostability and had a half-life 2 h longer than that of the wild type at a pH of 6.5. Prolyl aminopeptidase had improved stability within the acidic range and thermostability after modification, making it more suitable for a synergistic combination with various acidic and neutral endoproteases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Szawlowska, U., Zdunek-Zastocka, E., & Bielawski, W. (2011). Biochemical characterisation of prolyl aminopeptidase from shoots of triticale seedlings and its activity changes in response to suboptimal growth conditions. Plant Physiology and Biochemistry, 49(11), 1342–1349.

    CAS  PubMed  Google Scholar 

  2. Mika, N., Zorn, H., & Ruhl, M. (2015). Prolyl-specific peptidases for applications in food protein hydrolysis. Applied Microbiology and Biotechnology, 99(19), 7837–7846.

    CAS  PubMed  Google Scholar 

  3. Rosenblum, J. S., & Kozarich, J. W. (2003). Prolyl peptidases: a serine protease subfamily with high potential for drug discovery. Current Opinion in Chemical Biology, 7(4), 496–504.

    CAS  PubMed  Google Scholar 

  4. Juillerat-Jeanneret, L. (2008). Prolyl-specific peptidases and their inhibitors in biological processes. Current Chemical Biology, 2, 97–109.

    CAS  Google Scholar 

  5. Murai, A., Tsujimoto, Y., Matsui, H., & Watanabe, K. (2004). An Aneurinibacillus sp. strain AM-1 produces a proline-specific aminopeptidase useful for collagen degradation. Journal of Applied Microbiology, 96(4), 810–818.

    CAS  PubMed  Google Scholar 

  6. Izawa, N., Ishikawa, S., Tanokura, T., Ohta, K., & Hayashi, K. (1997). Purification and characterization of Aeromonas caviae aminopeptidase possessing debittering activity. Journal of Agricultural and Food Chemistry, 45, 4897–4902.

    CAS  Google Scholar 

  7. Lin, S. J., Chen, Y.-H., Chen, L.-L., Feng, H.-H., Chen, C.-C., & Chu, W.-S. (2008). Large-scale production and application of leucine aminopeptidase produced by Aspergillus oryzae LL1 for hydrolysis of chicken breast meat. European Food Research and Technology, 227, 159–165.

    CAS  Google Scholar 

  8. Rawlings, N. D., Tolle, D. P., & Barrett, A. J. (2004). MEROPS: the peptidase database. Nucleic Acids Research, 32(Database issue), D160–D164.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Polgar, L. (2005). The catalytic triad of serine peptidases. Cellular and Molecular Life Sciences, 62(19-20), 2161–2172.

    CAS  PubMed  Google Scholar 

  10. Morel, F., Gilbert, C., Geourjon, C., Frot-Coutaz, J., & Atlan, D. (1999). The prolyl aminopeptidase from Lactobacillus delbrueckii subsp. bulgaricus belongs to the α/β hydrolase fold family. Biochimica et Biophysica Acta, 1429(2), 501–505.

    CAS  PubMed  Google Scholar 

  11. Polgár, L. (2002). The prolyl oligopeptidase family. Cellular & Molecular Life Sciences Cmls, 59(2), 349–362.

    Google Scholar 

  12. Albertson, N. H., & Koomey, M. (2006). Molecular cloning and characterization of a proline iminopeptidase gene from Neisseria gonorrhoeae. Molecular Microbiology, 9, 1203–1211.

    Google Scholar 

  13. Kitazono, A., Kitano, A., Tsuru, D., & Yoshimoto, T. (1994). Isolation and characterization of the prolyl aminopeptidase gene (pap) from Aeromonas sobria: comparison with the Bacillus coagulans enzyme. Journal of Biochemistry, 116, 818–825.

    CAS  PubMed  Google Scholar 

  14. Li, N., Wu, J. M., Zhang, L. F., Zhang, Y. Z., & Feng, H. (2010). Characterization of a unique proline iminopeptidase from white-rot basidiomycetes Phanerochaete chrysosporium. Biochimie, 92(7), 779–788.

    CAS  PubMed  Google Scholar 

  15. Basten, D. E., Moers, A. P., Ooyen, A. J., & Schaap, P. J. (2005). Characterisation of Aspergillus niger prolyl aminopeptidase. Molecular Genetics and Genomics, 272, 673–679.

    CAS  PubMed  Google Scholar 

  16. Yamamoto, Y., Usuki, H., Iwabuchi, M., & Hatanaka, T. (2010). Prolyl aminopeptidase from Streptomyces thermoluteus subsp. fuscus strain NBRC14270 and synthesis of proline-containing peptides by its S144C variant. Applied and Environmental Microbiology, 76(18), 6180–6185.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Matsushita-Morita, M., Furukawa, I., Suzuki, S., Yamagata, Y., Koide, Y., Ishida, H., Takeuchi, M., Kashiwagi, Y., & Kusumoto, K. I. (2010). Characterization of recombinant prolyl aminopeptidase from Aspergillus oryzae. Journal of Applied Microbiology, 109, 156–165.

    CAS  PubMed  Google Scholar 

  18. Nandan, A., Pandey, A., & Nampoothiri, K. M. (2011). Proline-specific extracellular aminopeptidase purified from Streptomyces lavendulae. Applied Biochemistry and Biotechnology, 163, 994–1001.

    CAS  PubMed  Google Scholar 

  19. Zdunek-Zastocka, E., Grabowska, A., Branicki, T., & Michniewska, B. (2017). Biochemical characterization of the triticale TsPAP1, a new type of plant prolyl aminopeptidase, and its impact on proline content and flowering time in transgenic Arabidopsis plants. Plant Physiology and Biochemistry, 116, 18–26.

    CAS  PubMed  Google Scholar 

  20. Sun, X., Wang, F., Cai, H., Zhao, C., Ji, W., & Zhu, Y. (2013). Functional characterization of an Arabidopsis prolyl aminopeptidase AtPAP1 in response to salt and drought stresses. Plant Cell, Tissue and Organ Culture (PCTOC), 114, 325–338.

    CAS  Google Scholar 

  21. Mane, S., Gade, W., & Jamdar, S. (2011). Purification and characterization of proline aminopeptidase from chicken intestine. Process Biochemistry, 46, 1384–1389.

    CAS  Google Scholar 

  22. Bolumar, T., Sanz, Y., Aristoy, M. C., & Toldra, F. (2003). Purification and characterization of a prolyl aminopeptidase from Debaryomyces hansenii. Applied and Environmental Microbiology, 69(1), 227–232.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Uraji, M., Arima, J., Uesugi, Y., Iwabuchi, M., & Hatanaka, T. (2007). Effect of salt on the activity of Streptomyces prolyl aminopeptidase. Biochimica et Biophysica Acta, 1774(11), 1462–1469.

    CAS  PubMed  Google Scholar 

  24. Mahon, C. S., O’Donoghue, A. J., Goetz, D. H., Murray, P. G., Craik, C. S., & Tuohy, M. G. (2009). Characterization of a multimeric, eukaryotic prolyl aminopeptidase: an inducible and highly specific intracellular peptidase from the non-pathogenic fungus Talaromyces emersonii. Microbiology, 155(Pt 11), 3673–3682.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Iyer, S., La-Borde, P. J., Payne, K. A., Parsons, M. R., Turner, A. J., Isaac, R. E., & Acharya, K. R. (2015). Crystal structure of X-prolyl aminopeptidase from Caenorhabditis elegans: a cytosolic enzyme with a di-nuclear active site. FEBS Open Bio, 5, 292–302.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, K., Tian, Y., Zhou, N., Liu, D., & Zhang, D. (2018). Studies on fermentation optimization, stability and application of prolyl aminopeptidase from Bacillus subtilis. Process Biochemistry, 74, 10–20.

    CAS  Google Scholar 

  27. Jing, Z., & Feng, H. (2015). Studies on the molecular docking and amino acid residues involving in recognition of substrate in proline iminopeptidase by site-directed mutagenesis. The Protein Journal, 34(3), 173–180.

    CAS  PubMed  Google Scholar 

  28. Ding, G. W., Zhou, N. D., & Tian, Y. P. (2014). Over-expression of a proline specific aminopeptidase from Aspergillus oryzae JN-412 and its application in collagen degradation. Applied Biochemistry and Biotechnology, 173(7), 1765–1777.

    CAS  PubMed  Google Scholar 

  29. Wang, K. D., Wang, K. H., Zhou, N. D., & Tian, Y. P. (2017). Secretory expression, purification, characterization, and application of an Aspergillus oryzae prolyl aminopeptidase in Bacillus subtilis. Applied Biochemistry and Biotechnology, 181, 1611–1623.

    CAS  PubMed  Google Scholar 

  30. Yang, H., Zhu, Q., Zhou, N., & Tian, Y. (2016). Optimized expression of prolyl aminopeptidase in Pichia pastoris and its characteristics after glycosylation. World Journal of Microbiology and Biotechnology, 32, 176.

    PubMed  Google Scholar 

  31. Chica, R. A., Doucet, N., & Pelletier, J. N. (2005). Semi-rational approaches to engineering enzyme activity: combining the benefits of directed evolution and rational design. Current Opinion in Biotechnology, 16(4), 378–384.

    CAS  PubMed  Google Scholar 

  32. Wu, Z., Deng, W., Tong, Y., Liao, Q., Xin, D., Yu, H., Feng, J., & Tang, L. (2017). Exploring the thermostable properties of halohydrin dehalogenase from Agrobacterium radiobacter AD1 by a combinatorial directed evolution strategy. Applied Microbiology and Biotechnology, 101(8), 3201–3211.

    CAS  PubMed  Google Scholar 

  33. Li, Y., Yang, H., & Xu, F. (2018). Identifying and engineering a critical amino acid residue to enhance the catalytic efficiency of Pseudomonas sp. methyl parathion hydrolase. Applied Microbiology and Biotechnology, 102(15), 6537–6545.

    CAS  PubMed  Google Scholar 

  34. de Souza, A. R., de Araujo, G. C., Zanphorlin, L. M., Ruller, R., Franco, F. C., Torres, F. A., Mertens, J. A., Bowman, M. J., Gomes, E., & Da Silva, R. (2016). Engineering increased thermostability in the GH-10 endo-1,4-beta-xylanase from Thermoascus aurantiacus CBMAI 756. International Journal of Biological Macromolecules, 93, 20–26.

    PubMed  Google Scholar 

  35. Kong, X. D., Ma, Q., Zhou, J., Zeng, B. B., & Xu, J. H. (2014). A smart library of epoxide hydrolase variants and the top hits for synthesis of (S)-beta-blocker precursors. Angewandte Chemie (International Ed. in English), 53(26), 6641–6644.

    CAS  Google Scholar 

  36. Xu, G.-C., Wang, Y., Tang, M.-H., Zhou, J.-Y., Zhao, J., Han, R.-Z., & Ni, Y. (2018). Hydroclassified combinatorial saturation mutagenesis: reshaping substrate binding pockets of KpADH for enantioselective reduction of bulky–bulky ketones. ACS Catalysis, 8, 8336–8345.

    CAS  Google Scholar 

  37. Sun, Z., Lonsdale, R., Ilie, A., Li, G., Zhou, J., & Reetz, M. T. (2016). Catalytic asymmetric reduction of difficult-to-reduce ketones: triple-code saturation mutagenesis of an alcohol dehydrogenase. ACS Catalysis, 6, 1598–1605.

    CAS  Google Scholar 

  38. Baek, S. C., Ho, T. H., Lee, H. W., Jung, W. K., Gang, H. S., Kang, L. W., & Kim, H. (2017). Improvement of enzyme activity of beta-1,3-1,4-glucanase from Paenibacillus sp. X4 by error-prone PCR and structural insights of mutated residues. Applied Microbiology and Biotechnology, 101, 4073–4083.

    CAS  PubMed  Google Scholar 

  39. Shen, Y. P., Fong, L. S., Yan, Z. B., & Liu, J. Z. (2019). Combining directed evolution of pathway enzymes and dynamic pathway regulation using a quorum-sensing circuit to improve the production of 4-hydroxyphenylacetic acid in Escherichia coli. Biotechnology for Biofuels, 12, 94.

    PubMed  PubMed Central  Google Scholar 

  40. Lin, L., Wang, Y., Wu, M., Zhu, L., Yang, L., & Lin, J. (2018). Enhancing the thermostability of fumarase C from Corynebacterium glutamicum via molecular modification. Enzyme and Microbial Technology, 115, 45–51.

    CAS  PubMed  Google Scholar 

  41. Kentaro, M., & Misa, T. (2002). Creating random mutagenesis libraries using megaprimer PCR of whole plasmid. Biotechniques, 33, 1036–1038.

    Google Scholar 

  42. Ghadessy, F. J., Ong, J. L., & Holliger, P. (2001). Directed evolution of polymerase function by compartmentalized self-replication. Proceedings of the National Academy of Sciences of the United States of America, 98, 4552–4557.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Chanalia, P., Gandhi, D., Attri, P., & Dhanda, S. (2018). Extraction, purification and characterization of low molecular weight proline iminopeptidase from probiotic L. plantarum for meat tenderization. International Journal of Biological Macromolecules, 109, 651–663.

    CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by the Horizontal Research Project Foundation (grant number 180625) and National Natural Science Foundation of China (grant number 31601558).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nandi Zhou or Yaping Tian.

Ethics declarations

This article does not contain any studies with animals performed by any of the authors.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 21300 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Zhang, D., Huang, Q. et al. Mutagenesis for Improvement of Activity and Stability of Prolyl Aminopeptidase from Aspergillus oryzae. Appl Biochem Biotechnol 191, 1483–1498 (2020). https://doi.org/10.1007/s12010-020-03277-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03277-y

Keywords

Navigation