Skip to main content

Advertisement

Log in

Comprehensive Optimization of Culture Conditions for Production of Biomass-Hydrolyzing Enzymes of Trichoderma SG2 in Submerged and Solid-State Fermentation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Lignocellulose biomass contain large macromolecules especially cellulose and hemicelluloses that can be converted to fuel and chemicals using microbial biocatalysts. This study presents comprehensive optimization of production of biomass-hydrolyzing enzymes (BHE) by a high β-glucosidase-producing Trichoderma SG2 for bioconversion of lignocellulose biomass. Overall, a mixture of paper powder and switchgrass was most suited for production of BHE in submerged fermentation (SmF). BHE production was significantly different for various organic and inorganic nitrogen sources. The combination of peptone, yeast extract, and ammonium sulfate resulted in the highest activities (Units/mL) of BHE: 9.85 ± 0.55 cellulase, 38.91 ± 0.31 xylanase, 21.19 ± 1.35 β-glucosidase, and 7.63 ± 0.31 β-xylosidase. Surfactants comparably enhanced BHE production. The highest cellulase activity (4.86 ± 0.55) was at 25 °C, whereas 35 °C supported the highest activities of xylanase, β-glucosidase, and β-xylosidase. A broad initial culture pH (4–7) supported BHE production. The Topt for cellulase and xylanase was 50 °C. β-xylosidase and β-glucosidase were optimally active at 40 and 70 °C, respectively; pH 5 resulted in highest cellulase, β-glucosidase, and β-xylosidase activities; and pH 6 resulted in highest xylanase activity. Response surface methodology (RSM) was used to optimize major medium ingredients. BHE activities were several orders of magnitude higher in solid-state fermentation (SSF) than in SmF. Therefore, SSF can be deployed for one-step production of complete mixture of Trichoderma SG2 BHE for bioconversion of biomass to saccharide feedstock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Biely, P. (1985). Microbial xylanolytic systems. Trends in Biotechnology, 3, 286–289.

    Article  CAS  Google Scholar 

  2. Bisaria, V. S., & Ghose, T. K. (1981). Biodegradation of cellulosic materials: substrates, microorganisms, enzymes and products. Enzyme Microbial Technology, 3, 90–104.

    Article  CAS  Google Scholar 

  3. Sangkharak, K., Vangsirikul, P., & Janthachat, S. (2011). Isolation of novel cellulase from agricultural soil and application for ethanol production. International Journal of Advanced Biotechnology and Research, 2, 230–239.

    CAS  Google Scholar 

  4. Herbert, R. A. (1992). A perspective on the biotechnological potential of extremophiles. Trends Biotechnology., 11, 395–402.

    Article  Google Scholar 

  5. Li, H., Kim, N. J., Jiang, M., Kang, J. W., & Chang, H. N. (2009). Simultaneous saccharification and fermentation of lignocellulosic residues pretreated with phosphoric acid–acetone for bioethanol production. Bioresource Technology, 100(13), 3245–3251.

    Article  CAS  Google Scholar 

  6. Premalatha, N., Gopal, N. O., Jose, P. A., Anandham, R., & Kwon, S. (2015). Optimization of cellulase production by Enhydrobacter sp. ACCA2 and its application in biomass saccharification. Frontiers in Microbiology., 6, 1–11.

    Article  Google Scholar 

  7. Maheshwari, D. K., Gohade, S., Paul, J., & Varma, A. (1994). Paper mill sludge as a potential source for cellulase production by Trichoderma reesei QM 9123 and Aspergillus niger using mixed cultivation. Carbohydrate Polymers, 23, 161–163.

    Article  CAS  Google Scholar 

  8. Wen, Z., Liao, W., & Chen, S. (2005). Production of cellulases/β-glucosidase by the mixed fungi culture Trichoderma reesei and Aspergillus phoenicis on dairy manure. Process Biochemistry, 40, 3087–3094.

    Article  CAS  Google Scholar 

  9. Seyis, I., & Aksoz, N. (2003). Determination of some physiological factors affecting xylanase production from Trichoderma harzianum 1073 D3. New Microbiology, 26, 75–81.

    CAS  Google Scholar 

  10. Bakri, Y. P., Jacques, P., & Thonart, P. (2003). Xylanase production by Penicillium canescens 10-10c in solid-state fermentation. Applied Biochemistry and Biotechnology, 108, 737–748.

    Article  Google Scholar 

  11. Wilson, D. B. (2009). Cellulases and biofuels. Current Opinion in Biotechnology, 20, 1–5.

    Article  Google Scholar 

  12. Seidl, V., Gamauf, C., Druzhinina, I. S., Seiboth, B., Hartl, L., & Kubicek, C. P. (2008). The Hypocrea jecorina (Trichoderma reesei) hypercellulolytic mutant RUT C30 lacks a 85 kb (29 gene-encoding) region of the wild-type genome. BMC Genomics, 11, 9–327.

    Google Scholar 

  13. Okeke, B. C. (2014). Cellulolytic and xylanolytic potential of high β-glucosidase producing Trichoderma from decaying biomass. Applied Biochemistry and Biotechnology, 174(4), 1581–1598.

    Article  CAS  Google Scholar 

  14. Okeke, B. C., Hall, R. W., Nanjundaswamy, A., Thomson, M. S., Deravi, Y., Sawyer, L., & Prescott, A. (2015). Selection and molecular characterization of cellulolytic-xylanolytic fungi from surface soil-biomass mixtures from Black Belt sites. Microbiological Research, 175, 24–33.

    Article  CAS  Google Scholar 

  15. El-Hadi, A. A., El-Nour, S. A., Hammad, A., Kamel, Z., Anwar, M., & Araújo, M. (2014). Optimization of cultural and nutritional conditions for carboxymethylcellulase production by Aspergillus hortai. Journal of radiation research and Applied Sciences, 7, 23–28.

    Article  CAS  Google Scholar 

  16. Diasa, P. V. S., Ramosa, K. O., Padilhab, I. Q. M., & Demetrius, A. (2014). Optimization of cellulase production by Bacillus sp. isolated from sugarcane cultivated soil. Chemical Engineering Transactions, 38, 277–282.

    Google Scholar 

  17. Deka, D., Bhargavi, P., Sharma, A., Goyal, D., Jawed, M., & Goyal, A. (2011). Enhancement of cellulase activity from a new strain of Bacillus subtilis by medium optimization and analysis with various cellulosic substrates. Enzyme Research. https://doi.org/10.4061/2011/151656.

  18. Gupta, M. N., & Roy, I. (2002). Applied biocatalysis: an overview. Indian Journal of Biochemistry and Biophysics, 39(4), 220–228.

    CAS  PubMed  Google Scholar 

  19. Lee, H., Lee, Y. M., Heo, Y. M., Hong, J., Jang, S., Ahn, B., & Kim, J. (2017). Optimization of fungal enzyme production by Trichoderma harzianum KUC1716 through surfactant-induced morphological changes. Mycobiology., 45(1), 48–51.

    Article  Google Scholar 

  20. Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76, 965–977.

    Article  CAS  Google Scholar 

  21. Zambare, V., & Christopher, L. (2011). Statistical analysis of cellulase production in Bacillus amyloliquefaciens. ELBA Bioflux., 3, 38–45.

    Google Scholar 

  22. Dey, G., Mitra, A., Banerjee, R., & Maiti, B. R. (2001). Enhanced production of amylase by optimization of nutritional constituents using response surface methodology. Biochemical Engineering Journal, 7, 227–231.

    Article  CAS  Google Scholar 

  23. Focht, D. D. (1994). Microbiological procedures for biode-gradation research. In R. W. Weaver et al. (Eds.), Methods of soil analysis, Part 2—Microbiological and biochemical properties (pp. 407–426). Madison: Soil Science Society of America, BookSeries 5. SSSA.

    Google Scholar 

  24. Brown, D. E., Hasan, M., & Thornton, A. J. (1998). Fat production by Trichoderma reesi. Biotechnology Letters, 10, 249.

    Article  Google Scholar 

  25. Chavez, R. A. P., Tavares, L. C., Teixeira, C. S. C., Carvalho, J. C. M., Converti, A., & Sato, S. (2004). Influence of nitrogen source on the productions of α-amylase and glucoamylase by a new Trichoderma sp. from soluble starch. Chemical and Biochemical Engineering, 18, 403–407.

    CAS  Google Scholar 

  26. Okeke, B. C., & Lue, J. (2011). Characterization of a defined cellulolytic and xylanolytic bacterial consortium for bioprocessing of cellulose and hemicelluloses. Applied Biochemistry and Biotechnology, 163, 869–881.

    Article  CAS  Google Scholar 

  27. Saha, B. C., Iten, L. B., Cotta, M. A., & Wu, Y. V. (2005). Dilute acid pretreatment, enzymatic saccharification and fermentation of rice hulls to ethanol. Biotechnology Progress, 21, 816–822.

    Article  CAS  Google Scholar 

  28. Shu, G., Yang, H., & Wang, S. (2013). Optimization of cellulase production by Trichoderma reesei HY07 using response surface methodology. Research Journal of Applied Sciences, Engineering and Technology, 5(23), 5438–5442.

    Article  Google Scholar 

  29. Gomes, I., Gomes, J., Steiner, W., & Esterbauer, H. (1992). Production of cellulase and xylanase by a wild strain of Trichoderma viride. Applied Microbiology and Biotechnology., 36(5), 701–707.

    Article  CAS  Google Scholar 

  30. Deshpande, S. K., Bhotmange, M. G., Chakrabarti, T., & Shastri, P. N. (2008). Production of cellulase and xylanase by Trichoderma reesei (QM 9414 mutant) Aspergillus niger and mixed culture by solid state fermentation (SSF) of water hyacinth (Eichhornia crassipes). Indian Journal of Chemical Technology., 15, 449–456.

    CAS  Google Scholar 

  31. Pandya, J. J., & Gupte, A. (2012). Production of xylanase under solid-state fermentation by Aspergillus tubingensis JP-1 and its application. Bioprocess and Biosystems Engineering, 35, 769–779.

    Article  CAS  Google Scholar 

  32. Rocha, V. A. L., Maeda, R. N., Anna, L. M. M. S., & Pereira, N. (2013). Sugarcane bagasse as feedstock for cellulase production by Trichoderma harzianum in optimized culture medium. Electronic Journal of Biotechnology, 16. https://doi.org/10.2225/vol16-issue5-fulltext-1.

  33. Okeke, B. C., & Obi, S. K. C. (1994). Lignocellulose and sugar compositions of some agro-waste materials. Bioresource Technology, 47, 283–284.

    Article  CAS  Google Scholar 

  34. Sasi, A., Ravikumar, M., & Kani, M. (2012). Optimization, production and purification of cellulase enzyme from marine Aspergillus flavus. African Journal of Microbiology Research, 6, 4214–4218.

    CAS  Google Scholar 

  35. Vu, V. H., Pham, T. A., & Kim, K. (2011). Improvement of fungal cellulase production by mutation and optimization of solid state fermentation mycobiology. Mycobiology, 39(1), 20–25.

    Article  CAS  Google Scholar 

  36. Reese, E., & Maguire, A. (1971). Increase in cellulase yield by addition of surfactants to cellobiose cultures of Trichoderma viride. Developments in Industrial Microbiology, 12, 212–224.

    Google Scholar 

  37. Jahangeer, S., Khan, N., Jahangeer, S., Sohail, M., Shahzad, S., & Ahmad, A. (2005). Screening and characterization of fungal cellulases isolated from the native environmental source. Journal of Botany, 37, 739–748.

    Google Scholar 

  38. Immanuel, G., Bhagavath, C., Raj, P. I., Esakkiraj, P., & Palavesam, A. (2007). Production and partial purification of cellulase by Aspergillus niger and A. fumigatus fermented in coir waste and sawdust. Journal of Microbiology, 3, 1–11.

    Google Scholar 

  39. Gautam, S. P., Bundela, P. S., Pandey, A. K., Khan, J., Awasthi, M. K., & Sarsaiya, S. (2011). Optimization for the production of cellulase enzyme from municipal solid waste residue by two novel cellulolytic fungi. Biotechnology Research International. https://doi.org/10.4061/2011/810425.

  40. Lynd, L. R., Weimer, P. J., van Zyl, W. H., & Pretorius, I. S. (2002). Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 66, 506–577.

    Article  CAS  Google Scholar 

  41. Singhania, R. R., Patel, A. K., Soccol, C. R., & Pandey, A. (2009). Recent advances in solid-state fermentation. Biochemical Engineering Journal, 44, 13–18.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This was supported by a grant from the US Department of Energy (DE-EE0003132).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ananda Nanjundaswamy or Benedict C. Okeke.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nanjundaswamy, A., Okeke, B.C. Comprehensive Optimization of Culture Conditions for Production of Biomass-Hydrolyzing Enzymes of Trichoderma SG2 in Submerged and Solid-State Fermentation. Appl Biochem Biotechnol 191, 444–462 (2020). https://doi.org/10.1007/s12010-020-03258-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03258-1

Keywords

Navigation