Skip to main content
Log in

A Sensitive Electrochemical Ascorbic Acid Sensor Using Glassy Carbon Electrode Modified by Molybdenite with Electrodeposited Methylene Blue

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A non-enzymatic amperometric sensor using natural molybdenite (MLN) electrodeposited with methylene blue (MB) has been fabricated and characterized and its analytical performances were investigated for the determination of ascorbic acid (AA). The surface morphology of the electrode modified by electrodeposited MB was studied by use of the Advanced Mineral Identification and Characterization System (AMICS) and laser confocal high-temperature scanning microscope (LCSM). The poly(MB) and MLN immobilized sensor showed good stability, reproducibility, sensitivity, and selectivity. It exhibited a linear performance range from 3 to 1000 μM, with a lower detection limit of 0.083 μM (signal/noise = 3) and short response time (< 5 s). No obvious decrease in the current was observed after 20 days storage. The methodology reproducibility of this sensor was 2.6%. It showed good anti-interference ability for the potential interfering compounds. The poly(MB) film not only can enhance the electron-transfer rate but also increase the lifetime of the sensor. This study demonstrated the applicability of natural molybdenite for the fabrication of non-enzymatic electrochemical AA sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Wu, F., Huang, T., Hu, Y. J., Yang, X., Ouyang, Y. J., & Xie, Q. J. (2016). Differential pulse voltammetric simultaneous determination of ascorbic acid, dopamine and uric acid on a glassy carbon electrode modified with electroreduced graphene oxide and imidazolium groups. Microchimica Acta, 183, 2539–2546. https://doi.org/10.1007/s00604-016-1895-3.

    Article  CAS  Google Scholar 

  2. Arrigoni, O., & De Tullio, M. C. (2002). Ascorbic acid: Much more than just an antioxidant. Biochimica et Biophysica Acta, 1569(1-3), 1–9. https://doi.org/10.1016/s0304-4165(01)00235-5.

    Article  CAS  PubMed  Google Scholar 

  3. Liu, X., Wei, S., & Chen, S. (2014). Graphene-multiwall carbon nanotube-gold nanocluster composites modified electrode for the simultaneous determination of ascorbic acid, dopamine, and uric acid. Applied Biochemistry and Biotechnology, 173(7), 1717–1726. https://doi.org/10.1007/s12010-014-0959-2.

    Article  CAS  PubMed  Google Scholar 

  4. Atta, N. F., Elkady, M. F., & Galal, A. (2010). Simultaneous determination of catecholamines, uric acid and ascorbic acid at physiological levels using poly(n-methylpyrrole)/pd-nanoclusters sensor. Analytical Biochemistry, 400(1), 78–88. https://doi.org/10.1016/j.ab.2010.01.001.

    Article  CAS  PubMed  Google Scholar 

  5. Zare, H. R., & Nasirizadeh, N. (2011). A comparison of the electrochemical and electroanalytical behavior of ascorbic acid, dopamine and uric acid at bare, activated and multi-wall carbon nanotubes modified glassy carbon electrodes. Journal of the Iranian Chemical Society, 8(1 Supplement), S55–S66. https://doi.org/10.1007/BF03254282.

    Article  CAS  Google Scholar 

  6. Nezhad, M. R. H., Tashkhourian, J., & Khodaveisi, J. (2010). Sensitive spectrophotometric detection of dopamine, levodopa and adrenaline using surface plasmon resonance band of silver nanoparticles. Journal of the Iranian Chemical Society, 7, S83–S91. https://doi.org/10.1007/bf03246187.

    Article  CAS  Google Scholar 

  7. Li, N., Guo, J. Z., Liu, B., Cui, H., Mao, L. Q., & Lin, Y. Q. (2009). Determination of monoamine neurotransmitters and their metabolites in a mouse brain microdialysate by coupling high-performance liquid chromatography with gold nanoparticle initiated chemiluminescence. Analytica Chimica Acta, 645(1-2), 48–55. https://doi.org/10.1016/j.aca.2009.04.050.

    Article  CAS  PubMed  Google Scholar 

  8. Li, L., Cai, X., Ding, Y., Gu, S., & Zhang, Q. (2013). Synthesis of Mn-doped CdTe quantum dots and their application as a fluorescence probe for ascorbic acid determination. Analytical Methods, 5(23), 6748–6754. https://doi.org/10.1039/C3AY41257A.

    Article  CAS  Google Scholar 

  9. Cai, W., Lai, T., Du, H., & Ye, J. (2014). Electrochemical determination of ascorbic acid, dopamine and uric acid based on an exfoliated graphite paper electrode: A high performance flexible sensor. Sensors and Actuators B: Chemical, 193, 492–500. https://doi.org/10.1016/j.snb.2013.12.004.

    Article  CAS  Google Scholar 

  10. Ahn, M., & Kim, J. (2012). Electrochemical behavior of dopamine and ascorbic acid at dendritic Au rod surfaces: Selective detection of dopamine in the presence of high concentration of ascorbic acid. Journal of Electroanalytical Chemistry, 683, 75–79. https://doi.org/10.1016/j.jelechem.2012.08.012.

    Article  CAS  Google Scholar 

  11. Li, D. P., Liu, X. Y., Yi, R., Zhang, J. X., Su, Z. Q., & Wei, G. (2018). Electrochemical sensor based on novel two-dimensional nanohybrids: MoS2 nanosheets conjugated with organic copper nanowires for simultaneous detection of hydrogen peroxide and ascorbic acid. Inorganic Chemistry Frontiers, 5, 112–119. https://doi.org/10.1039/c7qi00542c.

    Article  CAS  Google Scholar 

  12. Su, S., Sun, H. F., Xu, F., Yuwen, L. H., & Wang, L. H. (2013). Highly sensitive and selective determination of dopamine in the presence of ascorbic acid using gold nanoparticles-decorated MoS2 nanosheets modified electrode. Electroanalysis, 25, 1–7. https://doi.org/10.1002/elan.201300332.

    Article  CAS  Google Scholar 

  13. Zhang, R., Song, B., & Yuan, J. L. (2018). Bioanalytical methods for hypochlorous acid detection: Recent advances and challenges. Trends in Analytical Chemistry, 99, 1–33. https://doi.org/10.1016/j.trac.2017.11.015.

    Article  CAS  Google Scholar 

  14. Liu, M. M., Liu, R., & Chen, W. (2013). Graphene wrapped Cu2O nanocubes: Non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability. Biosensors & Bioelectronics, 45, 206–212. https://doi.org/10.1016/j.bios.2013.02.010.

    Article  CAS  Google Scholar 

  15. Ragupathy, D., & Lee, A. I. G. K. P. (2009). Layer-by-layer electrochemical assembly of poly(diphenylamine)/phosphotungstic acid as ascorbic acid sensor. Microchimica Acta, 166(3-4), 303–310. https://doi.org/10.1007/s00604-009-0201-z.

    Article  CAS  Google Scholar 

  16. Stanić, Z., & Stepanović, J. (2016). Potentiometric determination of ascorbic acid in water–acetonitrile solution using pyrite and chalcopyrite electrodes. Journal of Solid State Electrochemistry, 20(10), 2879–2893. https://doi.org/10.1007/s10008-016-3295-3.

    Article  CAS  Google Scholar 

  17. Sun, H. F., Chao, J., Zuo, X. L., Su, S., Liu, X. F., Yuwen, L. H., Fan, C. H., & Wang, L. H. (2014). Gold nanoparticle-decorated MoS2 nanosheets for simultaneous detection of ascorbic acid, dopamine and uric acid. RSC Advances, 4, 27625–27629. https://doi.org/10.1039/C4RA04046E.

    Article  CAS  Google Scholar 

  18. Pumera, M., & Loo, A. H. (2014). Layered transition-metal dichalcogenides (MoS2 and WS2) for sensing and biosensing. Trends in Analytical Chemistry, 61, 49–53. https://doi.org/10.1016/j.trac.2014.05.009.

    Article  CAS  Google Scholar 

  19. Wang, Y., Yang, T., Hasebe, Y., Zhang, Z. Q., & Tao, D. P. (2018). Carbon black-carbon nanotube co-doped polyimide sensors for simultaneous determination of ascorbic acid, uric acid and dopamine. Materials, 11(9), 1691–1703. https://doi.org/10.3390/ma11091691.

    Article  CAS  PubMed Central  Google Scholar 

  20. Wang, H. T., Na, X. K., Liu, S., Liu, H. F., Zhang, L. J., Xie, M. Z., Jiang, Z. C., Han, F., Li, Y., Cheng, S. S., & Tan, M. Q. (2019). A novel “turn-on” fluorometric and magnetic bi-functional strategy for ascorbic acid sensing and in vivo imaging via carbon dots-MnO2 nanosheet nanoprobe. Talanta, 201, 388–396. https://doi.org/10.1016/j.talanta.2019.04.022.

    Article  CAS  PubMed  Google Scholar 

  21. Wang, T. Y., Zhu, H. C., Zhuo, J. Q., & Zhu, Z. W. (2013). Biosensor based on ultrasmall MoS2 nanoparticles for electrochemical detection of H2O2 released by cells at the nanomolar level. Analytical Chemistry, 85(21), 10289–10295. https://doi.org/10.1021/ac402114c.

    Article  CAS  PubMed  Google Scholar 

  22. Cao, X. Y. (2014). Ultra-sensitive electrochemical DNA biosensor based on signal amplification using gold nanoparticles modified with molybdenum disulfide, graphene and horseradish peroxidase. Microchimica Acta, 181(9-10), 1133–1141. https://doi.org/10.1007/s00604-014-1301-y.

    Article  CAS  Google Scholar 

  23. Huang, H. Y., Zhang, J. Y., Cheng, M. M., Liu, K. P., & Wang, X. Y. (2017). Amperometric sensing of hydroquinone using a glassy carbon electrode modified with a composite consisting of grapheme and molybdenum disulfide. Microchimica Acta, 184(12), 4803–4808. https://doi.org/10.1007/s00604-017-2531-6.

    Article  CAS  Google Scholar 

  24. Zhang, G., Liu, H., Qu, J. H., & Li, J. H. (2016). Two-dimensional layered MoS2: rational design, properties and electrochemical applications. Energy & Environmental Science, 9, 1190–1209. https://doi.org/10.1039/C5EE03761A.

    Article  CAS  Google Scholar 

  25. Zhang, K. J., Sun, H., & Hou, S. F. (2016). Layered MoS2–graphene composites for biosensor applications with sensitive electrochemical performance. AnalMethods, 8, 3780–3787. https://doi.org/10.1039/C6AY00959J.

    Article  CAS  Google Scholar 

  26. Liu, Y., Nan, H., Wu, X., Pan, W., & Wang, W. (2013). Layer-by-layer thinning of MoS2 by plasma. ACS Nano, 7(5), 4202–4209. https://doi.org/10.1021/nn400644t.

    Article  CAS  PubMed  Google Scholar 

  27. Wang, Y., Ou, J. Z., & Balendhran, S. (2013). Electrochemical control of photoluminescence in two-dimensional MoS2 nanoflakes. ACS Nano, 7(11), 10083–10093. https://doi.org/10.1021/nn4041987.

    Article  CAS  PubMed  Google Scholar 

  28. Tian, Y., He, Y., & Zhu, Y. (2004). Construction of 3D flower-like MoS2 spheres with nanosheets as anode materials for high-performance lithium ion batteries. Materials Chemistry and Physics, 87, 87–90. https://doi.org/10.1016/j.electacta.2013.10.098.

    Article  CAS  Google Scholar 

  29. Zhan, Y., Liu, Z., Najmaei, S., Ajayan, P. M., & Lou, J. (2012). Large-area Vapor-Phase Growth and Characterization of MoS(2) Atomic Layers on a SiO(2) Substrate. Small, 8, 966–971. https://doi.org/10.1002/smll.201102654.

    Article  CAS  PubMed  Google Scholar 

  30. Zhao, R., Wang, Y., Zhang, Z. Q., Hasebe, Y., & Tao, D. P. (2019). A glassy carbon electrode modified with molybdenite and Ag nanoparticle composite for selectively sensing of ascorbic acid. Analytical Sciences, 35(7), 733–738. https://doi.org/10.2116/analsci.19p012.

    Article  CAS  PubMed  Google Scholar 

  31. Wang, Y., & Hasebe, Y. (2012). Methylene blue-induced stabilization effect of adsorbed glucose oxidase on a carbon-felt surface for bioelectrocatalytic activity. Journal of the Electrochemical Society, 159(5), F110–F118. https://doi.org/10.1149/2.jes036205.

    Article  CAS  Google Scholar 

  32. Wen, Y., Yuan, Y. l., Li, L., Ma, D. D., Liao, Q., & Hou, S. Y. (2017). Ultrasensitive DNAzyme based amperometric determination of uranyl ion using mesoporous silica nanoparticles loaded with methylene blue. Microchimica Acta, 184(10), 3909–3917. https://doi.org/10.1007/s00604-017-2397-7.

    Article  CAS  Google Scholar 

  33. Tiwari, I., & Singh, M. (2011). Preparation and characterization of methylene blue-SDS-multiwalled carbon nanotubes nanocomposite for the detection of hydrogen peroxide. Microchimica Acta, 174(3-4), 223–230. https://doi.org/10.1007/s00604-011-0620-5.

    Article  CAS  Google Scholar 

  34. Wu, G. Z., Gao, Y., Zhao, D., Ling, P. H., & Gao, F. (2017). Methanol/oxygen enzymatic biofuel cell using laccase and NAD+-dependent dehydrogenase cascades as biocatalysts on carbon nanodots electrodes. ACS Applied Materials & Interfaces, 9(46), 40978–40986. https://doi.org/10.1021/acsami.7b12295.

    Article  CAS  Google Scholar 

  35. Hasebe, Y., Wang, Y., & Fukuoka, K. (2011). Electropolymerized poly(toluidine blue)-modified carbon felt for highly sensitive amperometric determination of NADH in flow injection analysis. Journal of Environmental Sciences, 236(6), 1050–1056. https://doi.org/10.1016/S1001-0742(10)60513-X.

    Article  CAS  Google Scholar 

  36. Mollarasouli, F., Asadpour-Zeynali, K., Campuzano, S., Yáñez-Sedeño, P., & Pingarrón, J. M. (2017). Non-enzymatic hydrogen peroxide sensor based on grapheme quantum dots-chitosan/methylene blue hybrid nanostructures. Electrochimica Acta, 246, 303–314. https://doi.org/10.1016/j.electacta.2017.06.003.

    Article  CAS  Google Scholar 

  37. Sun, C. L., Chang, C. T., Lee, H. H., Zhou, J. G., & Wang, J. (2011). Microwave-assisted synthesis of a core-shell MWCNT/GONR heterostructure for the electrochemical detection of ascorbic acid dopamine and uric acid. ACS Nano, 5(10), 7788–7795. https://doi.org/10.1021/nn2015908.

    Article  CAS  PubMed  Google Scholar 

  38. Liu, X. F., Wei, S. P., Chen, S. H., Yuan, D. H., & Zhang, W. (2014). Graphene-multiwall carbon nanotube-gold nanocluster composites modified electrode for the simultaneous determination of ascorbic acid, dopamine, and uric acid. Applied Biochemistry and Biotechnology, 173(7), 1717–1726. https://doi.org/10.1007/s12010-014-0959-2.

    Article  CAS  PubMed  Google Scholar 

  39. Ganiga, M., & CyriaJc. (2016). An ascorbic acid sensor based on cadmium sulphide quantum dots. Analytical and Bioanalytical Chemistry, 408(14), 3699–3706. https://doi.org/10.1007/s00216-016-9454-7.

    Article  CAS  PubMed  Google Scholar 

  40. Wang, M. J., Xu, J. S., Zhang, X. B., Fan, Z. C., & Tong, Z. W. (2018). Fabrication of a new self-assembly compound of CsTi2NbO7 with cationic cobalt porphyrin utilized as an ascorbic acid sensor. Applied Biochemistry and Biotechnology, 185(3), 834–846. https://doi.org/10.1007/s12010-018-2701-y.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank to the financial support from University of Science and Technology Liaoning (No. 2019TD01) which made this work possible.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yue Wang or Dongping Tao.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, Y., Hasebe, Y. et al. A Sensitive Electrochemical Ascorbic Acid Sensor Using Glassy Carbon Electrode Modified by Molybdenite with Electrodeposited Methylene Blue. Appl Biochem Biotechnol 191, 1533–1544 (2020). https://doi.org/10.1007/s12010-020-03255-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03255-4

Keywords

Navigation