Skip to main content

Advertisement

Log in

Effects of Different Energy Substrates and Nickel and Cadmium Ions on the Growth of Acidithiobacillus ferrooxidans and Its Application for Disposal of Ni-Cd Batteries

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In the present work, the effects of different energy substrates and nickel ions (Ni2+) and cadmium ions (Cd2+) on the growth of Acidithiobacillus ferrooxidans (A. ferrooxidans) were investigated. Ferrous sulphate (FeSO4) was the optimum energy substrate for A. ferrooxidans growth, among the selected substrates. When cultured together with FeSO4 and sulphur (S), A. ferrooxidans first oxidised the ferrous ions (Fe2+), and the S was utilised as the concentration of Fe2+ decreased. After adapting to culture with Ni2+ and Cd2+, A. ferrooxidans presented good tolerance to both ions, with the maximum concentration reaching 4.11 g/L Ni2+ and 1.69 g/L Cd2+. A preliminary simulation of industrial application was also performed on used Ni-Cd batteries. With bioleaching, the highest concentrations of Cd2+ and Ni2+ were 3003 mg/L at day 8 and 1863 mg/L at day 14, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Morrow, H. (2003). Cadmium 2003 batteries, China and the European Commission. In Metal Bulletin 14th International Minor Metals Seminar. Kowloon Shangri-La Hotel.

  2. Vassura, I., Morselli, L., Bernardi, E., & Passarini, F. (2009). Chemical characterisation of spent rechargeable batteries. Waste Management, 29(8), 2332–2335.

    Article  CAS  Google Scholar 

  3. Arshadi, M., & Mousavi, S. (2015). Multi-objective optimization of heavy metals bioleaching from discarded mobile phone PCBs: simultaneous Cu and Ni recovery using Acidithiobacillus ferrooxidans. Separation and Purification Technology, 147, 210–219.

    Article  CAS  Google Scholar 

  4. Kim, M., Seo, J., Choi, Y., & Kim, G. (2016). Bioleaching of spent Zn–Mn or Ni–Cd batteries by Aspergillus species. Waste Management, 51, 168–173.

    Article  CAS  Google Scholar 

  5. Ijadi Bajestani, M., Mousavi, S. M., & Shojaosadati, S. A. (2014). Bioleaching of heavy metals from spent household batteries using Acidithiobacillus ferrooxidans: statistical evaluation and optimization. Separation and Purification Technology, 132, 309–316.

    Article  CAS  Google Scholar 

  6. Zhang, S., Yan, L., Xing, W., Chen, P., Zhang, Y., & Wang, W. (2018). Acidithiobacillus ferrooxidans and its potential application. Extremophiles, 22(4), 563–579.

    Article  CAS  Google Scholar 

  7. Rawlings, D. E. (2005). Characteristics and adaptability of iron-and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates. Microbial Cell Factories, 4, 13.

    Article  Google Scholar 

  8. Nestor, D., Valdivia, U., & Chaves, A. P. (2001). Mechanisms of bioleaching of a refractory mineral of gold with Thiobacillus ferrooxidans. International Journal of Mineral Processing, 62, 187–198.

    Article  CAS  Google Scholar 

  9. Gao, S., Luo, X., Nie, E., Zheng, G., Zheng, Z., Chen, G., & Feng, J. (2010). Role of Acidithiobacillus ferrooxidans in bioleaching of copper. Chinese Journal of Environmental Engineering, 3, 677–682.

    Google Scholar 

  10. Wang, B., Yuan, X., Han, L., Wang, X., & Zhang, L. (2015). Release and bioavailability of heavy metals in three typical mafic tailings under the action of Bacillus mucilaginosus and Thiobacillus ferrooxidans. Environmental Earth Sciences, 74, 5087–5096.

    Article  CAS  Google Scholar 

  11. San Martín, F., Kracht, W., & Vargas, T. (2018). Biodepression of pyrite using Acidithiobacillus ferrooxidans in seawater. Minerals Engineering, 117, 127–131.

    Article  Google Scholar 

  12. Suzuki, I., Takeuchi, T. L., Yuthasastrakosol, T. D., & Oh, J. K. (1990). Ferrous iron and sulfur oxidation and ferric iron reduction activities of Thiobacillus ferrooxidans are affected by growth on ferrous iron, sulfur, or a sulfide ore. Applied and Environmental Microbiology, 56(6), 1620–1626.

    Article  CAS  Google Scholar 

  13. Malhotra, S., Tankhiwale, A., Rajvaidya, A., & Pandey, R. (2002). Optimal conditions for bio-oxidation of ferrous ions to ferric ions using Thiobacillus ferrooxidans. Bioresource Technology, 85(3), 225–234.

    Article  CAS  Google Scholar 

  14. Chandraprabha, M., & Natarajan, K. (2013). Role of outer membrane exopolymers of Acidithiobacillus ferrooxidans in adsorption of cells onto pyrite and chalcopyrite. International Journal of Mineral Processing, 123, 152–157.

    Article  CAS  Google Scholar 

  15. Johnson, D. B., & Hallberg, K. B. (2009). Carbon, iron and sulfur metabolism in acidophilic micro-organisms. Advances in Microbial Physiology, 54, 201–255.

    Article  CAS  Google Scholar 

  16. Silverman, M. P., & Lundgren, D. G. (1959). Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans: I. An improved medium and a harvesting procedure for securing high cell yields. Journal of Bacteriology, 77, 642.

    Article  CAS  Google Scholar 

  17. Mahandra, H., Singh, R., & Gupta, B. (2018). Recycling of Zn-C and Ni-Cd spent batteries using Cyphos IL 104 via hydrometallurgical route. Journal of Cleaner Production, 172, 133–142.

    Article  CAS  Google Scholar 

  18. (USEPA), U. E. P. A (1986) Test methods for evaluating solid waste, Laboratory Manual Physical/Chemical Methods.

  19. Zhu, N., Zhang, L., Li, C., & Cai, C. (2003). Recycling of spent nickel–cadmium batteries based on bioleaching process. Waste Management, 23(8), 703–708.

    Article  CAS  Google Scholar 

  20. Zhang, J., Fan, W. P., Fang, P., & Xia, C. (2001). Effect of substrates on bio-oxidation catalyzed by T. ferrooxidans. Journal of Nanjing University of Chemical Technology, 23, 37–41.

    CAS  Google Scholar 

  21. Minamino, T., Imae, Y., Oosawa, F., Kobayashi, Y., & Oosawa, K. (2003). Effect of intracellular pH on rotational speed of bacterial flagellar motors. Journal of Bacteriology, 185, 1190–1194.

    Article  CAS  Google Scholar 

  22. Booth, I. R. (1985). Regulation of cytoplasmic pH in bacteria. Microbiological Reviews, 49(4), 359–378.

    Article  CAS  Google Scholar 

  23. Velgosová, O., Kaduková, J., Marcinčáková, R., Palfy, P., & Trpčevská, J. (2013). Influence of H2SO4 and ferric iron on Cd bioleaching from spent Ni–Cd batteries. Waste Management, 33(2), 456–461.

    Article  Google Scholar 

  24. Masindi, V., & Muedi, K. L. (2018). Environmental contamination by heavy metals (pp. 115–133). Aglan: Heavy Metals; IntechOpen.

    Google Scholar 

Download references

Funding

This study was funded by the Independent Innovation Project funded by the Ministry of Education-Ecological and Environmental Restoration and Protection (2018ZZCX12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Xiao.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, ZJ., Li, H., Yao, JH. et al. Effects of Different Energy Substrates and Nickel and Cadmium Ions on the Growth of Acidithiobacillus ferrooxidans and Its Application for Disposal of Ni-Cd Batteries. Appl Biochem Biotechnol 191, 387–396 (2020). https://doi.org/10.1007/s12010-020-03251-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03251-8

Keywords

Navigation