Skip to main content
Log in

Kinetic Analysis of R-Selective ω-Transaminases for Determination of Intrinsic Kinetic Parameters and Computational Modeling of Kinetic Resolution of Chiral Amine

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Reliable kinetic parameters of enzymes are of paramount importance for a precise understanding of catalytic performance, which is essential for enzyme engineering and process optimization. Here, we developed a simple and convenient method to determine intrinsic kinetic parameters of R-selective ω-transaminases (ω-TAs) with a minimal set of kinetic data. Using (R)-α-methylbenzylamine ((R)-α-MBA) and pyruvate as a substrate pair, two R-selective ω-TAs from Arthrobacter sp. and Aspergillus fumigatus were subjected to kinetic measurements. In contrast to S-selective ω-TAs, both R-selective ω-TAs were observed to be devoid of substrate inhibition by pyruvate. Double reciprocal plot analysis was carried out with two sets of kinetic data obtained at varying concentrations of (R)-α-MBA under a fixed concentration of pyruvate and vice versa, leading to the determination of three intrinsic kinetic parameters, i.e., one kcat and two KM values, using three regression constants. The validity of the kinetic parameters was verified by a self-consistency test using a regression constant left out in the kinetic parameter determination, showing that deviations of calculated regression constants from the experimental ones were less than 15%. Because the kinetic parameters for (R)-α-MBA and pyruvate are not apparent but intrinsic, a cosubstrate substitution method enabled rapid determination of intrinsic parameters for a new substrate pair using just one set of kinetic data. Eventually, computational modeling of kinetic resolution of rac-α-MBA was carried out and showed a good agreement with experimental reaction progresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ghislieri, D., & Turner, N. J. (2014). Biocatalytic approaches to the synthesis of enantiomerically pure chiral amines. Topics in Catalysis, 57, 284–300.

    Article  CAS  Google Scholar 

  2. Kelly, S. A., Pohle, S., Wharry, S., Mix, S., Allen, C. C. R., Moody, T. S., & Gilmore, B. F. (2018). Application of ω-transaminases in the pharmaceutical industry. Chemical Reviews, 118, 349–367.

    Article  CAS  Google Scholar 

  3. Patil, M. D., Grogan, G., Bommarius, A., & Yun, H. (2018). Oxidoreductase-catalyzed synthesis of chiral amines. ACS Catalysis, 8, 10985–11015.

    Article  CAS  Google Scholar 

  4. Grogan, G. (2018). Synthesis of chiral amines using redox biocatalysis. Current Opinion in Chemical Biology, 43, 15–22.

    Article  CAS  Google Scholar 

  5. Malik, M. S., Park, E. S., & Shin, J. S. (2012). Features and technical applications of ω-transaminases. Applied Microbiology and Biotechnology, 94(5), 1163–1171.

    Article  CAS  Google Scholar 

  6. Guo, F., & Berglund, P. (2017). Transaminase biocatalysis: optimization and application. Green Chemistry, 19, 333–360.

    Article  CAS  Google Scholar 

  7. Savile, C. K., Janey, J. M., Mundorff, E. C., Moore, J. C., Tam, S., Jarvis, W. R., Colbeck, J. C., Krebber, A., Fleitz, F. J., Brands, J., Devine, P. N., Huisman, G. W., & Hughes, G. J. (2010). Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science, 329(5989), 305–309.

    Article  CAS  Google Scholar 

  8. Simon, R. C., Richter, N., Busto, E., & Kroutil, W. (2013). Recent developments of cascade reactions involving ω-transaminases. ACS Catalysis, 4, 129–143.

    Article  Google Scholar 

  9. Höhne, M., Schätzle, S., Jochens, H., Robins, K., & Bornscheuer, U. T. (2010). Rational assignment of key motifs for function guides in silico enzyme identification. Nature Chemical Biology, 6(11), 807–813.

    Article  Google Scholar 

  10. Esparza-Isunza, T., González-Brambila, M., Gani, R., Woodley, J. M., & López-Isunza, F. (2015). The coupling of ω-transaminase and Oppenauer oxidation reactions via intra-membrane multicomponent diffusion - a process model for the synthesis of chiral amines. Chemical Engineering Journal, 259, 221–231.

    Article  CAS  Google Scholar 

  11. Milker, S., Fink, M. J., Oberleitner, N., Ressmann, A. K., Bornscheuer, U. T., Mihovilovic, M. D., & Rudroff, F. (2017). Kinetic modeling of an enzymatic redox cascade in vivo reveals bottlenecks caused by cofactors. ChemCatChem, 9, 3420–3427.

    Article  CAS  Google Scholar 

  12. Shin, J. S., & Kim, B. G. (1998). Kinetic modeling of ω-transamination for enzymatic kinetic resolution of α-methylbenzylamine. Biotechnology and Bioengineering, 60(5), 534–540.

    Article  CAS  Google Scholar 

  13. Shin, J. S., & Kim, B. G. (2002). Substrate inhibition mode of ω-transaminase from Vibrio fluvialis JS17 is dependent on the chirality of substrate. Biotechnology and Bioengineering, 77(7), 832–837.

    Article  CAS  Google Scholar 

  14. Park, E. S., & Shin, J. S. (2013). ω-Transaminase from Ochrobactrum anthropi is devoid of substrate and product inhibitions. Applied and Environmental Microbiology, 79(13), 4141–4144.

    Article  CAS  Google Scholar 

  15. Leipold, L., Dobrijevic, D., Jeffries, J. W. E., Bawn, M., Moody, T. S., Ward, J. M., & Hailes, H. C. (2019). The identification and use of robust transaminases from a domestic drain metagenome. Green Chemistry, 21(1), 75–86.

    Article  CAS  Google Scholar 

  16. Heuson, E., Charmantray, F., Petit, J. L., de Berardinis, V., & Gefflaut, T. (2019). Enantioselective synthesis of D- and L-α-amino acids by enzymatic transamination using glutamine as smart amine donor. Advanced Synthesis & Catalysis, 361, 778–785.

    Article  CAS  Google Scholar 

  17. Han, S. W., & Shin, J. S. (2016). A facile method to determine intrinsic kinetic parameters of ω-transaminase displaying substrate inhibition. Journal of Molecular Catalysis B: Enzymatic, 133, S500–S507.

    Article  Google Scholar 

  18. Shin, J. S., & Kim, B. G. (2001). Comparison of the ω-transaminases from different microorganisms and application to production of chiral amines. Bioscience, Biotechnology, and Biochemistry, 65, 1782–1788.

    Article  CAS  Google Scholar 

  19. Park, E. S., Kim, M., & Shin, J. S. (2012). Molecular determinants for substrate selectivity of ω-transaminases. Applied Microbiology and Biotechnology, 93(6), 2425–2435.

    Article  CAS  Google Scholar 

  20. Park, E. S., Malik, M. S., Dong, J. Y., & Shin, J. S. (2013). One-pot production of enantiopure alkylamines and arylalkylamines of opposite chirality catalyzed by ω-transaminase. ChemCatChem, 5, 1734–1738.

    Article  CAS  Google Scholar 

  21. Park, E. S., Dong, J. Y., & Shin, J. S. (2014). Active site model of (R)-selective ω-transaminase and its application to the production of D-amino acids. Applied Microbiology and Biotechnology, 98, 651–660.

    Article  CAS  Google Scholar 

  22. Han, S. W., Kim, J., Cho, H. S., & Shin, J. S. (2017). Active site engineering of ω-transaminase guided by docking orientation analysis and virtual activity screening. ACS Catalysis, 7, 3752–3762.

    Article  CAS  Google Scholar 

  23. Schätzle, S., Höhne, M., Redestad, E., Robins, K., & Bornscheuer, U. T. (2009). Rapid and sensitive kinetic assay for characterization of ω-transaminases. Analytical Chemistry, 81(19), 8244–8248.

    Article  Google Scholar 

  24. Bhushan, R., & Brückner, H. (2004). Marfey’s reagent for chiral amino acid analysis: a review. Amino Acids, 27(3-4), 231–247.

    Article  CAS  Google Scholar 

  25. Han, S. W., Park, E. S., Dong, J. Y., & Shin, J. S. (2015). Mechanism-guided engineering of ω-transaminase to accelerate reductive amination of ketones. Advanced Synthesis & Catalysis, 357, 1732–1740.

    Article  CAS  Google Scholar 

  26. Shin, G., Mathew, S., & Yun, H. (2015). Kinetic resolution of amines by (R)-selective omega-transaminase from Mycobacterium vanbaalenii. Journal of Industrial and Engineering Chemistry, 23, 128–133.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (2019R1F1A1062845). Dr. S.-W. Han was financially supported by the Initiative for Biological Function & Systems under the BK21 PLUS program of the Korean Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Shik Shin.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Ethics Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, SW., Shin, JS. Kinetic Analysis of R-Selective ω-Transaminases for Determination of Intrinsic Kinetic Parameters and Computational Modeling of Kinetic Resolution of Chiral Amine. Appl Biochem Biotechnol 191, 92–103 (2020). https://doi.org/10.1007/s12010-020-03240-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03240-x

Keywords

Navigation