Skip to main content
Log in

Purification and Characterization of a Novel β-Galactosidase From the Thermoacidophile Alicyclobacillus vulcanalis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Thermoacidophiles are microorganisms capable of optimum growth under a combination of high temperature and low pH. These microorganisms are a rich source of thermo- and acid- active/stable glycosyl hydrolases. Such enzymes could find use as novel biocatalysts in industrial processes, as operation at elevated temperature can increase substrate solubility, decrease viscosity, and reduce the risk of microbial contamination. We report the purification and characterization of an intracellular β-galactosidase from the thermoacidophile Alicyclobacillus vulcanalis DSM 16176. The enzyme was purified 110-fold, with a 5.89% yield. Denatured (83.7 kDa) and native (179 kDa) molecular masses were determined by SDS-PAGE and gel filtration, respectively, and suggest the enzyme functions as a homodimer. LC-MS/MS analysis confirmed identity, and bioinformatic analysis indicates the enzyme to be a member of the glycosyl hydrolase family 42 (GH42). Highest activity was measured at 70 °C and pH 6.0. The Km on the substrates ONPG and lactose were 5 and 258 mM, respectively. This enzyme is thermostable, retaining 76, 50, and 42% relative activity after 30, 60, and 120 min, respectively, at 70 °C. This property could lend its use to high-temperature industrial processes requiring a thermo-active β-galactosidase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Krüger, A., Schäfers, C., Schröder, C., & Antranikian, G. (2018). Towards a sustainable biobased industry – Highlighting the impact of extremophiles. New Biotechnology, 40(Pt A), 144–153. https://doi.org/10.1016/j.nbt.2017.05.002.

    Article  CAS  PubMed  Google Scholar 

  2. Husain, Q. (2010). β Galactosidases and their potential applications: A review. Critical Reviews in Biotechnology, 30(1), 41–62. https://doi.org/10.3109/07388550903330497.

    Article  CAS  PubMed  Google Scholar 

  3. Xavier, J. R., Ramana, K. V., & Sharma, R. K. (2018). β-Galactosidase: Biotechnological applications in food processing. Journal of Food Biochemistry, 42(5), e12564. https://doi.org/10.1111/jfbc.12564.

    Article  CAS  Google Scholar 

  4. Ryan, M. P., & Walsh, G. (2016). The biotechnological potential of whey. Reviews in Environmental Science and Biotechnology, 15(3), 479–498. https://doi.org/10.1007/s11157-016-9402-1.

    Article  CAS  Google Scholar 

  5. Silanikove, N., Leitner, G., & Merin, U. (2015). The interrelationships between lactose intolerance and the modern dairy industry: Global perspectives in evolutional and historical backgrounds. Nutrients. https://doi.org/10.3390/nu7095340.

  6. Zhang, J., Yue, T., & Yuan, Y. (2013). Alicyclobacillus contamination in the production line of kiwi products in China. PLoS One, 8(7). https://doi.org/10.1371/journal.pone.0067704.

  7. Ciuffreda, E., Bevilacqua, A., Sinigaglia, M., & Corbo, M. (2015). Alicyclobacillus spp.: New insights on ecology and preserving food quality through new approaches. Microorganisms, 3(4), 625–640. https://doi.org/10.3390/microorganisms3040625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Simbahan, J., Drijber, R., & Blum, P. (2004). Alicyclobacillus vulcanalis sp. nov., a thermophilic acidophilic bacterium isolated from Coso Hot Springs, California, USA. International Journal of Systematic and Evolutionary Microbiology, 54(5), 1703–1707. https://doi.org/10.1099/ijs.0.03012-0.

    Article  CAS  PubMed  Google Scholar 

  9. Di Lauro, B., Strazzulli, A., Perugino, G., La Cara, F., Bedini, E., Corsaro, M. M., & Moracci, M. (2008). Isolation and characterization of a new family 42 β-galactosidase from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius: Identification of the active site residues. Biochimica et Biophysica Acta - Proteins and Proteomics, 1784(2), 292–301. https://doi.org/10.1016/j.bbapap.2007.10.013.

    Article  CAS  Google Scholar 

  10. Morana, A., Esposito, A., Maurelli, L., Ruggiero, G., Ionata, E., Rossi, M., & Cara, F. (2008). A novel thermoacidophilic cellulase from Alicyclobacillus acidocaldarius. Protein & Peptide Letters, 15(9), 1017–1021. https://doi.org/10.2174/092986608785849209.

    Article  CAS  Google Scholar 

  11. Boyce, A., & Walsh, G. (2015). Characterisation of a novel thermostable endoglucanase from Alicyclobacillus vulcanalis of potential application in bioethanol production. Applied Microbiology and Biotechnology, 99(18), 7515–7525. https://doi.org/10.1007/s00253-015-6474-8.

    Article  CAS  PubMed  Google Scholar 

  12. Xia, W., Lu, H., Xia, M., Cui, Y., Bai, Y., Qian, L., & Yao, B. (2016). A novel glycoside hydrolase family 113 endo-β-1,4-mannanase from Alicyclobacillus sp. strain A4 and insight into the substrate recognition and catalytic mechanism of this family. Applied and Environmental Microbiology, 82(9), 2718–2727. https://doi.org/10.1128/AEM.04071-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee, S. J., Lee, D. W., Choe, E. A., Hong, Y. H., Kim, S. B., Kim, B. C., & Pyun, Y. R. (2005). Characterization of a thermoacidophilic L-arabinose isomerase from Alicyclobacillus acidocaldarius: Role of Lys-269 in pH optimum. Applied and Environmental Microbiology, 71(12), 7888–7896. https://doi.org/10.1128/AEM.71.12.7888-7896.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang, W., Bai, Y., Yang, P., Luo, H., Huang, H., Meng, K., & Yao, B. (2015). A novel bifunctional GH51 exo-α-l-arabinofuranosidase/endo-xylanase from Alicyclobacillus sp. A4 with significant biomass-degrading capacity. Biotechnology for Biofuels, 8(1), 197. https://doi.org/10.1186/s13068-015-0366-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Matzke, J., Herrmann, A., Schneider, E., & Bakker, E. P. (2000). Gene cloning, nucleotide sequence and biochemical properties of a cytoplasmic cyclomaltodextrinase (neopullulanase) from Alicyclobacillus acidocaldarius, reclassification of a group of enzymes. FEMS Microbiology Letters, 183(1), 55–61. https://doi.org/10.1016/S0378-1097(99)00630-8.

    Article  CAS  PubMed  Google Scholar 

  16. Eckert, K., & Schneider, E. (2003). A thermoacidophilic endoglucanase (CelB) from Alicyclobacillus acidocaldarius displays high sequence similarity to arabinofuranosidases belonging to family 51 of glycoside hydrolases. European Journal of Biochemistry, 270(17), 3593–3602. https://doi.org/10.1046/j.1432-1033.2003.03744.x.

    Article  CAS  PubMed  Google Scholar 

  17. Catara, G., Fiume, I., Iuliano, F., Maria, G., Ruggiero, G., Palmieri, G., & Rossi, M. (2006). A new kumamolisin-like protease from Alicyclobacillus acidocaldarius: An enzyme active under extreme acidic conditions. Biocatalysis and Biotransformation, 24(5), 358–370. https://doi.org/10.1080/10242420600792094.

    Article  CAS  Google Scholar 

  18. Gul-Guven, R., Guven, K., Poli, A., & Nicolaus, B. (2007). Purification and some properties of a β-galactosidase from the thermoacidophilic Alicyclobacillus acidocaldarius subsp. rittmannii isolated from Antarctica. Enzyme and Microbial Technology, 40(6), 1570–1577. https://doi.org/10.1016/j.enzmictec.2006.11.006.

    Article  CAS  Google Scholar 

  19. Rasouli, I. R., & Ulkarni, P. R. K. (1994). Enhancement of β-galactosidase productivity of Aspergillus niger NCIM-616. Journal of Applied Bacteriology, 77(4), 359–361. https://doi.org/10.1111/j.1365-2672.1994.tb03435.x.

    Article  CAS  PubMed  Google Scholar 

  20. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3.

    Article  CAS  PubMed  Google Scholar 

  21. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685. https://doi.org/10.1038/227680a0.

    Article  CAS  Google Scholar 

  22. Perkins, D. N., Pappin, D. J. C., Creasy, D. M., & Cottrell, J. S. (1999). Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis, 20(18), 3551–3567.

    Article  CAS  Google Scholar 

  23. Nagy, Z., Kiss, T., Szentirmai, A., & Biró, S. (2001). β-Galactosidase of Penicillium chrysogenum: Production, purification, and characterization of the enzyme. Protein Expression and Purification, 21(1), 24–29. https://doi.org/10.1006/prep.2000.1344.

    Article  CAS  PubMed  Google Scholar 

  24. Shaikh, S. A., Khire, J. M., & Khan, M. I. (1999). Characterization of a thermostable extracellular β-galactosidase from a thermophilic fungus Rhizomucor sp. Biochimica et Biophysica Acta - General Subjects, 1472(1–2), 314–322. https://doi.org/10.1016/S0304-4165(99)00138-5.

    Article  CAS  Google Scholar 

  25. Kim, Y. S., Park, C. S., & Oh, D. K. (2006). Lactulose production from lactose and fructose by a thermostable β-galactosidase from Sulfolobus solfataricus. Enzyme and Microbial Technology, 39(4), 903–908. https://doi.org/10.1016/j.enzmictec.2006.01.023.

    Article  CAS  Google Scholar 

  26. Chakraborti, S., Sani, R. K., Banerjee, U. C., & Sobti, R. C. (2000). Purification and characterization of a novel β-galactosidase from Bacillus sp MTCC 3088. Journal of Industrial Microbiology and Biotechnology, 24(1), 58–63. https://doi.org/10.1038/sj.jim.2900770.

    Article  CAS  Google Scholar 

  27. Rosenberg, I. M. (2006). Protein analysis and purification: Benchtop techniques. Springer Science & Business Media ISBN 978-0-8176-4412-3.

  28. Wanarska, M., Kur, J., Pladzyk, R., & Turkiewicz, M. (2005). Thermostable Pyrococcus woesei β-D-galactosidase - high level expression, purification and biochemical properties. Acta Biochimica Polonica, 52(4), 781–787.

    Article  CAS  Google Scholar 

  29. Kim, C. S., Ji, E. S., & Oh, D. K. (2003). Expression and characterisation of Kluyveromyces lactis β-galactosidase in Escherichia coli. Biotechnology Letters, 25(20), 1769–1774.

    Article  CAS  Google Scholar 

  30. O’Connell, S., & Walsh, G. (2007). Purification and properties of a β-galactosidase with potential application as a digestive supplement. Applied Biochemistry and Biotechnology, 141(1), 1–13. https://doi.org/10.1007/s12010-007-9206-4.

    Article  PubMed  Google Scholar 

  31. Holmes, M. L., Scopes, R. K., Moritz, R. L., Simpson, R. J., Englert, C., Pfeifer, F., & Dyall-Smith, M. L. (1997). Purification and analysis of an extremely halophilic β-galactosidase from Haloferax alicantei. Biochimica et Biophysica Acta - Protein Structure and Molecular Enzymology, 1337(2), 276–286. https://doi.org/10.1016/S0167-4838(96)00174-4.

    Article  CAS  Google Scholar 

  32. O’Connell, S., & Walsh, G. (2010). A novel acid-stable, acid-active β-galactosidase potentially suited to the alleviation of lactose intolerance. Applied Microbiology and Biotechnology, 86(2), 517–524. https://doi.org/10.1007/s00253-009-2270-7.

    Article  CAS  PubMed  Google Scholar 

  33. Krulwich, T. A., Davidson, L. F., Filip, S. J., J., Zuckerman, R. S., & Guffanti, A. A. (1978). The proton motive force and β-galactoside transport in Bacillus acidocaldarius. Journal of Biological Chemistry, 253(13), 4599–4603.

  34. Yuan, T., Yang, P., Wang, Y., Meng, K., Luo, H., Zhang, W., & Yao, B. (2008). Heterologous expression of a gene encoding a thermostable β-galactosidase from Alicyclobacillus acidocaldarius. Biotechnology Letters, 30(2), 343–348. https://doi.org/10.1007/s10529-007-9551-y.

    Article  CAS  PubMed  Google Scholar 

  35. Sen, S., Ray, L., & Chattopadhyay, P. (2012). Production, purification, immobilization, and characterization of a thermostable β-galactosidase from Aspergillus alliaceus. Applied Biochemistry and Biotechnology, 167(7), 1938–1953. https://doi.org/10.1007/s12010-012-9732-6.

    Article  CAS  PubMed  Google Scholar 

  36. Juajun, O., Nguyen, T. H., Maischberger, T., Iqbal, S., Haltrich, D., & Yamabhai, M. (2011). Cloning, purification, and characterization of β-galactosidase from Bacillus licheniformis DSM 13. Applied Microbiology and Biotechnology, 89(3), 645–654. https://doi.org/10.1007/s00253-010-2862-2.

    Article  CAS  PubMed  Google Scholar 

  37. Fernandes, S., Geueke, B., Delgado, O., Coleman, J., & Hatti-Kaul, R. (2002). β-Galactosidase from a cold-adapted bacterium: Purification, characterization and application for lactose hydrolysis. Applied Microbiology and Biotechnology, 58(3), 313–321. https://doi.org/10.1007/s00253-001-0905-4.

    Article  CAS  PubMed  Google Scholar 

  38. Rahim, K. A. A., & Lee, B. H. (2010). Specificity, inhibitory studies, and oligosaccharide formation by β-Galactosidase from Psychrotrophic Bacillus subtilis KL88. Journal of Dairy Science, 74(6), 1773–1778. https://doi.org/10.3168/jds.s0022-0302(91)78341-0.

    Article  Google Scholar 

  39. Hung, M. N., & Lee, B. (2002). Purification and characterization of a recombinant β-galactosidase with transgalactosylation activity from Bifidobacterium infantis HL96. Applied Microbiology and Biotechnology, 58(4), 439–445. https://doi.org/10.1007/s00253-001-0911-6.

    Article  CAS  PubMed  Google Scholar 

  40. Tanaka, Y., Kagamiishi, A., Kiuchi, A., & Horiuchi, T. (1975). Purification and properties of β-Galactosidase from Aspergillus oryzae. The Journal of Biochemistry, 77(1), 241–247. https://doi.org/10.1093/oxfordjournals.jbchem.a130713.

    Article  CAS  PubMed  Google Scholar 

  41. Gul Guven, R., Kaplan, A., Guven, K., Matpan, F., & Dogru, M. (2011). Effects of various inhibitors on β-galactosidase purified from the thermoacidophilic Alicyclobacillus acidocaldarius subsp. rittmannii isolated from Antarctica. Biotechnology and Bioprocess Engineering, 16(1), 114–119. https://doi.org/10.1007/s12257-010-0070-7.

    Article  CAS  Google Scholar 

  42. Mahoney, R. R., & Adamchuk, C. (1980). Effect of milk constituents on the hydrolysis of lactose by lactase from Kluyveromyces fragilis. Journal of Food Science, 45(4), 962–964. https://doi.org/10.1111/j.1365-2621.1980.tb07487.x.

    Article  CAS  Google Scholar 

  43. Supplee, G. C., & Bellis, B. (1922). The copper content of cows’ Milk. Journal of Dairy Science, 5(5), 455–467. https://doi.org/10.3168/jds.S0022-0302(22)94174-8.

    Article  CAS  Google Scholar 

  44. Park, A. R., & Oh, D. K. (2010). Effects of galactose and glucose on the hydrolysis reaction of a thermostable β-galactosidase from Caldicellulosiruptor saccharolyticus. Applied Microbiology and Biotechnology, 85(5), 1427–1435. https://doi.org/10.1007/s00253-009-2165-7.

    Article  CAS  PubMed  Google Scholar 

  45. Cowan, D. A., Daniel, R. M., Martin, A. M., & Morgan, H. W. (1984). Some properties of a β-galactosidase from an extremely thermophilic bacterium. Biotechnology and Bioengineering, 26(10), 1141–1145. https://doi.org/10.1002/bit.260261002.

    Article  CAS  PubMed  Google Scholar 

  46. Liu, N., Zhang, T., Wang, Y. J., Huang, Y. P., Ou, J. H., & Shen, P. (2004). A heat inducible tyrosinase with distinct properties from Bacillus thuringiensis. Letters in Applied Microbiology, 39(5), 407–412. https://doi.org/10.1111/j.1472-765X.2004.01599.x.

    Article  CAS  PubMed  Google Scholar 

  47. Whisnant, A. R., & Gilman, S. D. (2002). Studies of reversible inhibition, irreversible inhibition, and activation of alkaline phosphatase by capillary electrophoresis. Analytical Biochemistry, 307(2), 226–234. https://doi.org/10.1016/S0003-2697(02)00062-3.

    Article  CAS  PubMed  Google Scholar 

  48. Sheridan, P. P., & Brenchley, J. E. (2000). Characterization of a salt-tolerant family 42 β-galactosidase from a psychrophilic Antarctic Planococcus isolate. Applied and Environmental Microbiology, 66(6), 2438–2444. https://doi.org/10.1128/AEM.66.6.2438-2444.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee, E. G., Kim, S., Oh, D. B., Lee, S. Y., & Kwon, O. (2012). Distinct roles of β-galactosidase paralogues of the rumen bacterium Mannheimia succiniciproducens. Journal of Bacteriology, 194(2), 426–436. https://doi.org/10.1128/JB.05911-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fischer, L., Scheckermann, C., & Wagner, F. (1995). Purification and characterization of a thermotolerant β-galactosidase from Thermomyces lanuginosus. Applied and Environmental Microbiology, 61(4), 1497–1501.

    Article  CAS  Google Scholar 

  51. Chin-An, H., Roch-Chui, Y., & Cheng-Chun, C. (2006). Purification and characterization of a sodium-stimulated β-galactosidase from Bifidobacterium longum CCRC 15708. World Journal of Microbiology and Biotechnology, 22(4), 355–361. https://doi.org/10.1007/s11274-005-9041-0.

    Article  CAS  Google Scholar 

Download references

Funding

This work has been funded by the Irish Research Council under the Embark Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Ryan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murphy, J., Ryan, M.P. & Walsh, G. Purification and Characterization of a Novel β-Galactosidase From the Thermoacidophile Alicyclobacillus vulcanalis. Appl Biochem Biotechnol 191, 1190–1206 (2020). https://doi.org/10.1007/s12010-020-03233-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03233-w

Keywords

Navigation