Skip to main content
Log in

Adipose Tissue–Derived Mesenchymal Stem Cells Protect Against Amiodarone-Induced Lung Injury in Rats

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Pulmonary fibrosis (PF) is a progressive and irreversible lung disease, characterized by poor prognosis with limited treatment options. Mesenchymal stem cells (MSCs) are multi-potent cells having the ability to self-renew and differentiate into multiple tissues, thus considered a novel treatment option. The present study aimed to investigate the possible antifibrotic effect of undifferentiated adipose tissue–derived mesenchymal stem cell (AD-MSC) therapy on PF experimentally induced in rats using amiodarone (AMD). AMD (30 mg/kg) was given orally, once daily for 12 consecutive weeks to induce lung fibrosis. Following the confirmation of lung damage with histopathological examination, AD-MSCs (2 × 106 and 4 × 106 undifferentiated MSCs) were injected once intravenously, followed by 2 months for treatment. AMD induced focal fibroblastic cells proliferation in the peribronchiolar tissue, as well as in between the collapsed emphysematous alveoli. Also, AMD significantly increased serum and lung homogenate fibroblast growth factor-7 (FGF7), Clara cell protein-16 (CC16), and cytokeratin -19 (CK19) levels, as well as the expression of both iNOS and NFкB in the lung alveoli. Moreover, AMD caused excessive collagen deposition and increased alpha smooth muscle actin (α-SMA) expression. All findings significantly regressed on stem cell therapy in both doses, with superior effect of the high dose, providing evidence that adipose tissue–derived MSCs could be a promising approach for the treatment of PF.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chioma, O. S., & Drake, W. P. (2017). Role of microbial agents in pulmonary fibrosis. The Yale Journal of Biology and Medicine, 90(2), 219–227.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Reddy, M., Fonseca, L., Gowda, S., Chougule, B., Hari, A., & Totey, S. (2016). Human adipose-derived mesenchymal stem cells attenuate early stage of bleomycin induced pulmonary fibrosis: comparison with pirfenidone. International Journal of Stem Cells, 9(2), 192–206.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhao, D., Hou, L., Pan, M., Hua, J., Wang, Z., He, J., & Hu, H. (2018). Inhibitory effect and mechanism of mesenchymal stem cells cultured in 3D system on hepatoma cells HepG2. Applied Biochemistry and Biotechnology, 184(1), 212–227.

    CAS  PubMed  Google Scholar 

  4. Cai, C., Hou, L., Zhang, J., Zhao, D., Wang, Z., Hu, H., He, J., Guan, W., & Ma, Y. (2018). Author correction: the inhibitory effect of mesenchymal stem cells with rAd-NK4 on liver cancer. Applied Biochemistry and Biotechnology, 185(1), 357.

    CAS  PubMed  Google Scholar 

  5. Fikry, E. M., Safar, M. M., Hasan, W. A., Fawzy, H. M., & el-Denshary, E. E. (2015). Bone marrow and adipose-derived mesenchymal stem cells alleviate methotrexate-induced pulmonary fibrosis in rat: comparison with dexamethasone. Journal of Biochemical and Molecular Toxicology, 29(7), 321–329.

    CAS  PubMed  Google Scholar 

  6. Al-Shammari, B., et al. (2016). A mechanistic study on the amiodarone-induced pulmonary toxicity. Oxidative Medicine and Cellular Longevity, 2016.

  7. Raeder, E. A., Podrid, P. J., & Lown, B. (1985). Side effects and complications of amiodarone therapy. American Heart Journal, 109(5), 975–983.

    CAS  PubMed  Google Scholar 

  8. Mahavadi, P., Henneke, I., Ruppert, C., Knudsen, L., Venkatesan, S., Liebisch, G., Chambers, R. C., Ochs, M., Schmitz, G., Vancheri, C., Seeger, W., Korfei, M., & Guenther, A. (2014). Altered surfactant homeostasis and alveolar epithelial cell stress in amiodarone-induced lung fibrosis. Toxicological Sciences, 142(1), 285–297.

    CAS  PubMed  Google Scholar 

  9. Baumann, H., Fichtenkamm, P., Schneider, T., Biscoping, J., & Henrich, M. (2017). Rapid onset of amiodarone induced pulmonary toxicity after lung lobe resection–a case report and review of recent literature. Annals of Medicine and Surgery, 21, 53–57.

    PubMed  PubMed Central  Google Scholar 

  10. Piccini, J. P., Berger, J. S., & O’Connor, C. M. (2009). Amiodarone for the prevention of sudden cardiac death: a meta-analysis of randomized controlled trials. European Heart Journal, 30(10), 1245–1253.

    CAS  PubMed  Google Scholar 

  11. Leeder, R. G., Brien, J. F., & Massey, T. E. (1994). Investigation of the role of oxidative stress in amiodarone-induced pulmonary toxicity in the hamster. Canadian Journal of Physiology and Pharmacology, 72(6), 613–621.

    CAS  PubMed  Google Scholar 

  12. Schwaiblmair, M., Berghaus, T., Haeckel, T., Wagner, T., & von Scheidt, W. (2010). Amiodarone-induced pulmonary toxicity: an under-recognized and severe adverse effect? Clinical Research in Cardiology, 99(11), 693–700.

    CAS  PubMed  Google Scholar 

  13. Reasor, M. J., & Kacew, S. (1996). An evaluation of possible mechanisms underlying amiodarone-induced pulmonary toxicity. Proceedings of the Society for Experimental Biology and Medicine, 212(4), 297–304.

    CAS  PubMed  Google Scholar 

  14. Wolkove, N., & Baltzan, M. (2009). Amiodarone pulmonary toxicity. Canadian Respiratory Journal, 16(2), 43–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Martin, W., & Rosenow, E. (1988). Amiodarone pulmonary toxicity: recognition and pathogenesis (Part 2). Chest, 93(6), 1242–1248.

    CAS  PubMed  Google Scholar 

  16. Tomiyama, K., Murase, N., Stolz, D. B., Toyokawa, H., O’Donnell, D. R., Smith, D. M., Dudas, J. R., Rubin, J. P., & Marra, K. G. (2008). Characterization of transplanted green fluorescent protein+ bone marrow cells into adipose tissue. Stem Cells, 26(2), 330–338.

    PubMed  Google Scholar 

  17. Alhadlaq, A., & Mao, J. J. (2004). Mesenchymal stem cells: isolation and therapeutics. Stem Cells and Development, 13(4), 436–448.

    CAS  PubMed  Google Scholar 

  18. Woodbury, D., Schwarz, E. J., Prockop, D. J., & Black, I. B. (2000). Adult rat and human bone marrow stromal cells differentiate into neurons. Journal of Neuroscience Research, 61(4), 364–370.

    CAS  PubMed  Google Scholar 

  19. Zidan, R. A. (2011). Effect of long-term administration of amiodarone on rat lung and the possible protective role of vitamin E: a histological and immunohistochemical study. Egyptian Journal of Histology, 34(1), 117–128.

    Google Scholar 

  20. Zaglool, S. S., Zickri, M. B., Abd el Aziz, D. H., Mabrouk, D., & Metwally, H. G. (2011). Effect of stem cell therapy on amiodarone induced fibrosing interstitial lung disease in albino rat. International Journal of Stem Cells, 4(2), 133–142.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Bancroft, J. D., & Gamble, M. (2008). Theory and practice of histological techniques. Elsevier Health Sciences.

  22. Buchwalow, I. B., & Böcker, W. (2010). Immunohistochemistry. Basics and Methods, 1, 1–149.

    Google Scholar 

  23. Geiger, S., Hirsch, D., & Hermann, F. G. (2017). Cell therapy for lung disease. European Respiratory Review, 26(144), 170044.

    PubMed  Google Scholar 

  24. Tata, P. R., & Rajagopal, J. (2017). Plasticity in the lung: making and breaking cell identity. Development, 144(5), 755–766.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Uhal, B. D., Wang, R., Laukka, J., Zhuang, J., Soledad-Conrad, V., & Filippatos, G. (2003). Inhibition of amiodarone-induced lung fibrosis but not alveolitis by angiotensin system antagonists. Pharmacology & Toxicology, 92(2), 81–87.

    CAS  Google Scholar 

  26. Castro-Manrreza, M. E., & Montesinos, J. J. (2015). Immunoregulation by mesenchymal stem cells: biological aspects and clinical applications. Journal of Immunology Research, 2015.

  27. Nurkovic, J., Dolicanin, Z., Mustafic, F., Mujanovic, R., Memic, M., Grbovic, V., Skevin, A. J., & Nurkovic, S. (2016). Mesenchymal stem cells in regenerative rehabilitation. Journal of Physical Therapy Science, 28(6), 1943–1948.

    PubMed  PubMed Central  Google Scholar 

  28. Punithavathi, D., Venkatesan, N., & Babu, M. (2003). Protective effects of curcumin against amiodarone-induced pulmonary fibrosis in rats. British Journal of Pharmacology, 139(7), 1342–1350.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Moodley, Y., Atienza, D., Manuelpillai, U., Samuel, C. S., Tchongue, J., Ilancheran, S., Boyd, R., & Trounson, A. (2009). Human umbilical cord mesenchymal stem cells reduce fibrosis of bleomycin-induced lung injury. The American Journal of Pathology, 175(1), 303–313.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Nagata, N., Suematsu, R., Yoshii, C., Miyazaki, H., Sueishi, K., & Kido, M. (1997). Characterization of amiodarone pneumonitis as related to inflammatory cells and surfactant apoprotein. Chest, 112(4), 1068–1074.

    CAS  PubMed  Google Scholar 

  31. Cinar, R., et al. (2017). Cannabinoid CB1 receptor overactivity contributes to the pathogenesis of idiopathic pulmonary fibrosis. JCI Insight, 2(8).

  32. Kalayarasan, S., Sriram, N., & Sudhandiran, G. (2008). Diallyl sulfide attenuates bleomycin-induced pulmonary fibrosis: critical role of iNOS, NF-kappaB, TNF-alpha and IL-1beta. Life Sciences, 82(23–24), 1142–1153.

    CAS  PubMed  Google Scholar 

  33. Choi, H. J., Park, J. H., Lee, B. H., Chee, H. Y., Lee, K. B., & Oh, S. M. (2014). Suppression of NF-kappaB by dieckol extracted from Ecklonia cava negatively regulates LPS induction of inducible nitric oxide synthase gene. Applied Biochemistry and Biotechnology, 173(4), 957–967.

    CAS  PubMed  Google Scholar 

  34. Naura, A. S., et al. (2010). Requirement for inducible nitric oxide synthase in chronic allergen exposure-induced pulmonary fibrosis but not inflammation. Journal of Immunology, 185(5), 3076–3085.

    CAS  Google Scholar 

  35. Pullamsetti, S. S., et al. (2011). The role of dimethylarginine dimethylaminohydrolase in idiopathic pulmonary fibrosis. Science Translational Medicine, 3(87), 87ra53.

    PubMed  Google Scholar 

  36. Alvira, C. M. (2014). Nuclear factor-kappa-B signaling in lung development and disease: One pathway, numerous functions. Birth Defects Research. Part A, Clinical and Molecular Teratology, 100(3), 202–216.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Pahl, H. L. (1999). Activators and target genes of Rel/NF-κB transcription factors. Oncogene, 18(49), 6853–6866.

    CAS  PubMed  Google Scholar 

  38. Gregersen, P. K., Amos, C. I., Lee, A. T., Lu, Y., Remmers, E. F., Kastner, D. L., Seldin, M. F., Criswell, L. A., Plenge, R. M., Holers, V. M., Mikuls, T. R., Sokka, T., Moreland, L. W., Bridges SL Jr, Xie, G., Begovich, A. B., & Siminovitch, K. A. (2009). REL, encoding a member of the NF-κB family of transcription factors, is a newly defined risk locus for rheumatoid arthritis. Nature Genetics, 41(7), 820–823.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Hollenbach, E., Neumann, M., Vieth, M., Roessner, A., Malfertheiner, P., & Naumann, M. (2004). Inhibition of p38 MAP kinase-and RICK/NF-κB-signaling suppresses inflammatory bowel disease. The FASEB Journal, 18(13), 1550–1552.

    CAS  PubMed  Google Scholar 

  40. Tang, X., et al. (2006). Nuclear factor-κB (nf-κB) is frequently expressed in lung cancer and preneoplastic lesions. Cancer: Interdisciplinary International Journal of the American Cancer Society, 107(11), 2637–2646.

    CAS  Google Scholar 

  41. Abdelmawgoud, H., & Saleh, A. (2018). Anti-inflammatory and antioxidant effects of mesenchymal and hematopoietic stem cells in a rheumatoid arthritis rat model. Advances in Clinical and Experimental Medicine: Official Organ Wroclaw Medical University, 27(7), 873–880.

    Google Scholar 

  42. Regulski, M. J. (2017). Mesenchymal stem cells:" guardians of inflammation". Wounds: a Compendium of Clinical Research and Practice, 29(1), 20–27.

    Google Scholar 

  43. Kropski, J. A., Fremont, R. D., Calfee, C. S., & Ware, L. B. (2009). Clara cell protein (CC16), a marker of lung epithelial injury, is decreased in plasma and pulmonary edema fluid from patients with acute lung injury. Chest, 135(6), 1440–1447.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Marchand-Adam, S., Plantier, L., Bernuau, D., Legrand, A., Cohen, M., Marchal, J., Soler, P., Lesèche, G., Mal, H., Aubier, M., Dehoux, M., & Crestani, B. (2005). Keratinocyte growth factor expression by fibroblasts in pulmonary fibrosis: poor response to interleukin-1beta. American Journal of Respiratory Cell and Molecular Biology, 32(5), 470–477.

    CAS  PubMed  Google Scholar 

  45. Park, H. Y., Churg, A., Wright, J. L., Li, Y., Tam, S., Man, S. F., Tashkin, D., Wise, R. A., Connett, J. E., & Sin, D. D. (2013). Club cell protein 16 and disease progression in chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine, 188(12), 1413–1419.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Tzouvelekis, A., et al. (2005). Serum biomarkers in interstitial lung diseases. Respiratory Research, 6, 78.

    PubMed  PubMed Central  Google Scholar 

  47. Elseweidy, M. M., Askar, M. E., Elswefy, S. E., & Shawky, M. (2018). Nephrotoxicity induced by cisplatin intake in experimental rats and therapeutic approach of using mesenchymal stem cells and spironolactone. Applied Biochemistry and Biotechnology, 184(4), 1390–1403.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors whose names appear on the submission (1) made substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data; or the creation of new software used in the work; (2) drafted the work or revised it critically for important intellectual content; (3) approved the version to be published; and (4) agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Sara A. Wahdan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radwan, S.M., Ghoneim, D., Salem, M. et al. Adipose Tissue–Derived Mesenchymal Stem Cells Protect Against Amiodarone-Induced Lung Injury in Rats. Appl Biochem Biotechnol 191, 1027–1041 (2020). https://doi.org/10.1007/s12010-020-03227-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03227-8

Keywords

Navigation