Skip to main content
Log in

Novel Copper Bearing Schiff Bases with Photodynamic Anti-Inflammatory and Anti-Microbial Activities

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Schiff bases and their copper complexes have been previously studied for their anti-inflammatory, anti-tumor as well as anti-microbial activities. Schiff bases can be derivatized to gain photoluminiscence capacity. This property of the schiff bases enables the transfer of the electrons upon absorption of the light at a specific wavelength. In this study, we exploited this attribute of novel copper bearing schiff bases and tested their photodynamic biological activities. These compounds exerted photodynamic anti-inflammatory activities on the in vitro activated mammalian macrophages. Compared with salicylic acid control groups, these novel schiff bases had stronger activity which became more prominent with photo-induction. Moreover, they also had anti-microbial activity on gram negative bacteria E.coli and gram positive bacteria S.aureus.This anti-microbial activity was stronger than that of Neomycin on both bacterial strains. Our results suggest their potential use as anti-inflammatory and anti-microbial agents both in the dark as well as after photo-induction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

TNFα:

tumor necrosis factor α

LPS:

lipopolysaccharide

ELISA:

enzyme linked immunosorbent assay

PDT:

photodynamic therapy

References

  1. Broide, D. H. (2009). Immunomodulation of allergic disease. Annual Review of Medicine, 60, 279–291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Iwalewa, E. O., McGaw, L. J., Naidoo, V., Eloff, J., & Inflammation, N. (2007). The foundation of diseases and disorders. A review of phytomedicines of South African origin used to treat pain and inflammatory condition. African Journal of Biotechnology, 6(25), 2868–2885.

    Article  CAS  Google Scholar 

  3. Hancock, R. E. W., Nijnik, A., & Philpott, D. J. (2012). Modulating immunity as a therapy for bacterial infections. Nature Reviews Microbiology, 10, 243–254.

    Article  CAS  PubMed  Google Scholar 

  4. Kaufmann, T., & Simon, H. U. (2015). Targeting disease by immunomodulation. Cell Death and Differentiation, 22, 185–186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Julier, Z., Park, A. J., Briquez, P. S., & Martino, M. M. (2017). Promoting tissue regeneration by modulating the immune system. Acta Biomaterialia, 1–42.

  6. Khalil, D. N., Smith, E. L., Brentjens, R. J., & Wolchok, J. D. (2016). The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nature Reviews Clinical Oncology, 13(5), 273–290. https://doi.org/10.1038/nrclinonc.2016.25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tan, T. T., & Coussens, L. M. (2007). Humoral immunity, inflammation and cancer. Current Opinion in Immunology, 19(2), 209–216. https://doi.org/10.1016/j.coi.2007.01.001.

    Article  CAS  PubMed  Google Scholar 

  8. Daniel, C. S., & Ira, M. (2013). Oncology meets immunology: the cancer-immunity cycle. Immunity, 39(1), 1–10. https://doi.org/10.1016/j.immuni.2013.07.012.

    Article  CAS  Google Scholar 

  9. Guevara-Patiño, J. A., Turk, M. J., Wolchok, J. D., & Houghton, A. N. (2003). Immunity to cancer through immune recognition of altered self: studies with melanoma. Advances in Cancer Research, Academic Press, 90, 157–177. https://doi.org/10.1016/S0065-230X(03)90005-4.

    Article  Google Scholar 

  10. Valdés-Ramos, R., & Benítez-Arciniega, A. (2007). Nutrition and immunity in cancer. The British Journal of Nutrition, 98(S1), S127–S132. https://doi.org/10.1017/S0007114507833009.

    Article  CAS  PubMed  Google Scholar 

  11. Grivennikov, S. I., Greten, F. R., & Karin, M. (2010). Immunity, inflammation, and cancer. Cell, 140(6), 883–899. https://doi.org/10.1016/j.cell.2010.01.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rakoff-Nahoum, S. (2006). Why cancer and inflammation? The Yale Journal of Biology and Medicine, 79(3–4), 123–130.

    CAS  PubMed  Google Scholar 

  13. Coussens, L. M., & Werb, Z. (2002). Inflammation and cancer. Nature, 420(6917), 860–867. https://doi.org/10.1038/nature01322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Buck, M. D., Sowell, R. T., Kaech, S. M., & Pearce, E. L. (2017). Metabolic instruction of immunity. Cell, 169(4), 570–586. https://doi.org/10.1016/j.cell.2017.04.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Arango Duque, G., & Descoteaux, A. (2014). Macrophage cytokines: involvement in immunity and infectious diseases. Frontiers in Immunology, 5, 491. https://doi.org/10.3389/fimmu.2014.00491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Murray, R. Z., & Stow, J. L. (2014). Cytokine secretion in macrophages: SNAREs, Rabs, and membrane trafficking. Frontiers in Immunology, 5, 538. https://doi.org/10.3389/fimmu.2014.00538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kawagishi, C., Kurosaka, K., Watanabe, N., & Kobayashi, Y. (2001). Cytokine production by macrophages in association with phagocytosis of etoposide-treated P388 cells in vitro and in vivo. Biochimica et Biophysica Acta - Molecular Cell Research, 1541(3), 221–230. https://doi.org/10.1016/S0167-4889(01)00158-6.

    Article  CAS  Google Scholar 

  18. Cavaillon, J. M. (1994). Cytokines and macrophages. Biomedicine & Pharmacotherapy, 48(10), 445–453, ISSN 0753-3322. https://doi.org/10.1016/0753-3322(94)90005-1.

    Article  CAS  Google Scholar 

  19. Scull, C. M., Hays, W. D., & Fischer, T. H. (2010). Macrophage proinflammatory cytokine secretion is enhanced following interaction with autologous platelets. Journal of Inflammation, 7, 53. https://doi.org/10.1186/1476-9255-7-53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Berghaus, L. J., Moore, J. N., Hurley, D. J., Vandenplas, M. L., Fortes, B. P., Wolfert, M. A., & Boons, G. J. (2010). Innate immune responses of primary murine macrophage-lineage cells and RAW 264.7 cells to ligands of toll-like receptors 2, 3, and 4. Comparative Immunology, Microbiology and Infectious Diseases, 33(5), 443–454.

    Article  PubMed  Google Scholar 

  21. Schmitz, F., Mages, J., Heit, A., Lang, R., & Wagner, H. (2004). Transcriptional activation induced in macrophages by toll-like receptor (TLR) ligands: from expression profiling to a model of TLR signaling. European Journal of Immunology, 34(10), 2863–2873.

    Article  CAS  PubMed  Google Scholar 

  22. Soromou, L. W., Zhang, Z., Li, R., Chen, N., Guo, W., Huo, M., Guan, S., Lu, J., & Deng, X. (2012). Regulation of inflammatory cytokines in lipopolysaccharide-stimulated RAW 264.7 murine macrophage by 7-O-methyl-naringenin. Molecules, 17(3), 3574–3585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gasparini, C., Foxwell, B. M., & Feldmann, M. (2013). RelB/p50 regulates TNF production in LPS-stimulated dendritic cells and macrophages. Cytokine., 61(3), 736–740.

    Article  CAS  PubMed  Google Scholar 

  24. Parameswaran, N.;& Patial, S. (2010). Tumor necrosis factor-α signaling in macrophages. Critical Reviews in Eukaryotic Gene Expression, 20(2), 87–103.

  25. Ayaz, F. (2018). Ruthenium pyridyl thiocyanate complex increased the production of pro-inflammatory TNFα and IL1β cytokines by the LPS stimulated mammalian macrophages in vitro. Molecular Biology Reports.

  26. Ayaz, F. (2018). Ruthenium based photosensitizer exerts immunostimulatory and possible adjuvant role on the mammalian macrophages in vitro. Cumhuriyet Science Journal, 39, 991–998.

    Google Scholar 

  27. Ayaz, F., Alaş, M., Oğuz, M., & Gençaltürk, R. (2019). Aluminum doped carbon nanodots as potent adjuvants on the mammalian macrophages. Molecular Biology Reports, 1–11.

  28. Ayaz, F., Yuzer, A., & Ince Ocakoğlu, M. (2019). From peripherally unsubstituted subphthalocyanines with anti-inflammatory activity on macrophages to tri-iodo derivatives with adjuvant and immunostimulatory functions. Journal of Porphyrins and Phthalocyanines, 23, 56–62.

    Article  CAS  Google Scholar 

  29. Ayaz, F. (2019). Heteroleptic ruthenium polypyridyl complex had differential effects on the production of pro-inflammatory cytokines TNFα, IL1β, and IL6 by the mammalian macrophages in vitro. Inflammation, 1–6.

  30. Ayaz, F. (2019). Anti-inflammatory properties of the ruthenium polypyridyl complex, K314, on the in vitro activated macrophages. Journal of Research in Pharmacy, 23, 164–169.

    Article  CAS  Google Scholar 

  31. Ayaz, F., Abdulcelil, Y., & Ince ocakoğlu, M. (2018). Immunostimulatory effect of Zinc Phthalocyanine derivatives on macrophages based on the pro-inflammatory TNFα and IL1β cytokine production levels. Toxicology in Vitro, 53, 172–177.

    Article  CAS  PubMed  Google Scholar 

  32. Ayaz, F., Ugur, N., Ocakoglu, K., & Ince, M. (2019). Photo-induced anti-inflammatory activities of chloro substituted subphthalocyanines on the mammalian macrophages in vitro. Photodiagnosis and Photodynamic Therapy, 499–503.

  33. Ayaz, F., Ersan, R. H., & Algul, O. (2019). Symmetric bis-benzoxazole-based chemicals exerted anti-inflammatory effect on danger signal LPS-stimulated macrophages. Monatshefte fuer Chemie.

  34. Alafeefy, A. M., Bakht, M. A., Ganaie, M. A., Ansarie, M. N., El-Sayed, N. N., & Awaad, A. S. (2015). Synthesis, analgesic, anti-inflammatory and anti-ulcerogenic activities of certain novel Schiff’s bases as fenamate isosteres. Bioorganic & Medicinal Chemistry Letters, 25(2), 179–183.

    Article  CAS  Google Scholar 

  35. Shraddha, S., & Mishra, A. P. (2014). Metal complexes used as anti-inflammatory agents: synthesis, characterization and anti-inflammatory action of VO(II)-complexes. Arabian Journal of Organic Chemistry.

  36. Bhandari, S. V., Bothara, K. G., Raut, M. K., Patil, A. A., Sarkate, A. P., & Mokale, V. J. (2008). Design, synthesis and evaluation of antiinflammatory, analgesic and ulcerogenicity studies of novel S-substituted phenacyl-1,3,4-oxadiazole-2-thiol and Schiff bases of diclofenac acid as nonulcerogenic derivatives. Bioorganic & Medicinal Chemistry, 16(4), 1822–1831.

    Article  CAS  Google Scholar 

  37. Jesmin, M., et al. (2014). Analgesic and anti-inflammatory activities of some transition metal schiff base complexes international letters of chemistry. Physics and Astronomy, 27, 64–72.

    Google Scholar 

  38. Hosny, N. M., Sherif, Y. E., & El-Rahman, A. A. (2008). Spectral characterization and anti-inflammatory activity of schiff-base complexes derived from leucine and 2-acetylpyridine. Journal of Coordination Chemistry, 61(16), 2536–2548.

    Article  Google Scholar 

  39. Gönül, İ., Ay, B., Karaca, S., Şahin, O., & Serin, S. (2018). Synthesis, characterization, electrical conductivity and luminescence properties of two copper(II) complexes with tridentate N2O chelating ligands containing imine bond. Journal of Molecular Structure, 1156, 465–472.

    Article  Google Scholar 

  40. İlyas, G., Burak, A. Y., Karaca, S., Şahin, O., & Serin, S. (2018). Novel copper(II) complexes of two tridentate ONN type ligands: synthesis, characterization, electrical conductivity and luminescence properties. Inorganica Chimica Acta, 477, 75–83.

    Article  Google Scholar 

  41. Gönül, İ., Fakı, E., Ay, B., et al. (2018). Cobalt(II), nickel(II) and copper(II) complexes of a schiff base ligand: synthesis, structural characterization and luminescence properties. Transition Metal Chemistry, 43, 73.

    Article  Google Scholar 

  42. Fernandez-Fernandez, A., Manchanda, R., & McGoron, A. J. (2011). Theranostic applications of nanomaterials in cancer: drug delivery, image-guided therapy, and multifunctional platforms. Applied Biochemistry and Biotechnology, 165, 1628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Joy, B., Kumar, S. N., Radhika, A. R., et al. (2015). Embelin (2,5-Dihydroxy-3-undecyl-p-benzoquinone) for photodynamic therapy: study of their cytotoxicity in cancer cells. Applied Biochemistry and Biotechnology, 175, 1069.

    Article  CAS  PubMed  Google Scholar 

  44. Yu, C., Wo, F., Shao, Y., et al. (2013). Bovine serum albumin nanospheres synchronously encapsulating “gold selenium/gold” nanoparticles and photosensitizer for high-efficiency cancer phototherapy. Applied Biochemistry and Biotechnology, 169, 1566.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We greatly appreciate the guidance and support of Dr. Juan Anguita from CIC Biogune, Spain.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the manuscript writing process equally and approved the final version of the manuscript.

Corresponding authors

Correspondence to Furkan Ayaz or Ilyas Gonul.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Schiff base derivatives had anti-inflammatory activity.

• They decreased pro-inflammatory cytokine secretion by macrophages.

• They lacked cytotoxicity or immunostimulant activity.

• Addition of copper to the structure created a photo responsive anti-inflammatory agent

• These compounds also had strong dark anti-microbial activities.

Electronic supplementary material

ESM 1

(PPTX 96 kb)

ESM 2

(DOCX 323 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayaz, F., Gonul, I., Demirbag, B. et al. Novel Copper Bearing Schiff Bases with Photodynamic Anti-Inflammatory and Anti-Microbial Activities. Appl Biochem Biotechnol 191, 716–727 (2020). https://doi.org/10.1007/s12010-019-03223-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03223-7

Keywords

Navigation