Skip to main content

Advertisement

Log in

Enhanced Degradation of Diesel Oil by Using Biofilms Formed by Indigenous Purple Photosynthetic Bacteria from Oil-Contaminated Coasts of Vietnam on Different Carriers

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Oil pollution in marine environment caused by oil spillage has been a main threat to the ecosystem including the ocean life and to the human being. In this research, three indigenous purple photosynthetic strains Rhodopseudomonas sp. DD4, DQ41, and FO2 were isolated from oil-contaminated coastal zones in Vietnam. The cells of these strains were immobilized on different carriers including cinder beads (CB), coconut fiber (CF), and polyurethane foam (PUF) for diesel oil removal from artificial seawater. The mixed biofilm formed by using CB, CF, and PUF as immobilization supports degraded 90, 91, and 95% of diesel oil (DO) with the initial concentration of 17.2 g/L, respectively, after 14 days of incubation. The adsorption of DO on different systems was accountable for the removal of 12–16% hydrocarbons for different carriers. To the best of our knowledge, this is the first report on diesel oil degradation by purple photosynthetic bacterial biofilms on different carriers. Moreover, using carriers attaching purple photosynthetic bacteria to remove diesel oil in large scale is considered as an essential method for the improvement of a cost-effective and efficient bioremediation manner. This study can be a promising approach to eliminate DO from oil-contaminated seawater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mendiola, S., Achutegui, J. J., Sanchez, F. J., & San, M. J. (1998). Polluting potential wastewater from fish-meal and oil industries. Grasas Aceites, 49, 30–33.

    Article  CAS  Google Scholar 

  2. Chen, Y., Yu, B., Lin, J., Naidu, R., & Chen, Z. (2016). Simultaneous adsorption and biodegradation (SAB) of diesel oil using immobilized Acinetobacter venetianus on porous material. Chem Eng J, 289, 463–470.

    Article  CAS  Google Scholar 

  3. Li, H., Liu, L., & Yang, F. (2012). Hydrophobic modification of polyurethane foam for oil spill cleanup. Mar Pollut Bull, 64(8), 1648–1653.

    Article  CAS  Google Scholar 

  4. Lin, J., Gan, L., Chen, Z., & Naidu, R. (2015). Biodegradation of tetradecane using Acinetobacter venetianus immobilized on bagasse. Biochem Eng J, 100, 76–82.

    Article  CAS  Google Scholar 

  5. Varjani, S. J., Rana, D. P., Jain, A. K., Bateja, S., & Upasani, V. N. (2015). Synergistic ex-situ biodegradation of crude oil by halotolerant bacterial consortium of indigenous strains isolated from on shore sitesof Gujarat. India Inter Biodeterio Biodegrad, 103, 116–124.

    Article  CAS  Google Scholar 

  6. Manohar, S., Kim, C. K., & Karegoudar, T. B. (2001). Enhanced degradation of naphthalene by immobilization of Pseudomonas sp. strain NGK1 in polyurethane foam. Appl Microbiol Biotechnol, 55, 311–316.

    Article  CAS  Google Scholar 

  7. Patel, V., Cheturvedula, S., & Madamwar, D. (2012). Phenanthrene degradation by Pseudoxanthomonas sp. DMVP2 isolated from hydrocarbon contaminated sediment of Amlakhadi canal, Gujarat, India. J. Hazard. Mater. 201-202: 43-51. https://doi.org/10.1016/j.jhazmat.2011.11.002.

  8. Varjani, S. J., & Upasani, V. N. (2016). Biodegradation of petroleum hydrocarbons by oleophilic strain of Pseudomonas aeruginosa NCIM 5514. Bioresour Technol, 222, 195–201.

    Article  CAS  Google Scholar 

  9. Wu, M., Li, W., Dick, W. A., Ye, X., Chen, K., Kost, D., & Chen, L. (2017). Bioremediation of hydrocarbon degradation in a petroleum contaminated soil and microbial population and activity determination. Chemosphere, 169, 124–130.

    Article  CAS  Google Scholar 

  10. Alessandrello, M. J., Tomás, M. S. J., Raimondo, E. E., Vullo, D. L., & Ferrero, M. A. (2017a). Petroleum oil removal by immobilized bacterial cells on polyurethane foam under different temperature conditions. Mar Pollut Bull. https://doi.org/10.1016/j.marpolbul.2017.06.040.

  11. Hou, D., Shen, X., Luo, Q., He, Y., Wang, Q., & Liu, Q. (2013). Enhancement of the diesel oil degradation ability of a marine bacterial strain by immobilization on a novel compound carrier material. Mar Pollut Bull, 67(1-2), 146–151.

    Article  CAS  Google Scholar 

  12. Liang, Y., Zhang, X., Dai, D., & Li, G. (2009). Porous biocarrier-enhanced biodegradation of crude oil contaminated soil. Inter Biodeterio Biodegrad, 63, 80–87.

    Article  CAS  Google Scholar 

  13. Lin, M., Liu, Y., Chen, W., Wang, H., & Hu, X. (2014). Use of bacteria-immobilized cotton fiber to absorb and degrade crude oil. Inter. Biodeterio. Biodegrad., 88, 8–12.

    Article  CAS  Google Scholar 

  14. Alessandrello, M. J., Tomás, M. S. J., Isaac, P., Vullo, D. L., & Ferrero, M. A. (2017b). PAH removal by immobilized bacterial cells-support systems using low-cost culture media for biomass production. Inter. Biodeterio. Biodegrad., 120, 6–14.

    Article  CAS  Google Scholar 

  15. Alessandrello, M. J., Parellada, E. A., Tomás, M. S. J., Neske, A., Vullo, D. L., & Ferrero, M. A. (2017c). Polycyclic aromatic hydrocarbons removal by immobilized bacterial cells using annonaceous acetogenins for biofilm formation stimulation on polyurethane foam. J Environ Chem Eng, 5, 189–195.

  16. Wang, X., Wang, X., Liu, M., Bu, Y., Zhang, J., Chen, J., & Zhao, J. (2015). Adsorption–synergic biodegradation of diesel oil in synthetic seawater by acclimated strains immobilized on multifunctional materials. Mar Pollut Bull, 92(1-2), 195–200.

    Article  CAS  Google Scholar 

  17. Harwood, C. S., & Gibson, J. (1988). Anaerobic and aerobic metabolism of diverse aromatic compounds by the photosynthetic bacterium Rhodopseudomonaspalustris. Appl Environ Microbiol, 54(3), 712–717.

  18. Gibson, J., & Harwood, C. S. (1995). Degradation of aromatic compounds by nonsulfur purple bacteria. In R. E. Blankenship, M. T. Madigan, & C. E. Bauer (Eds.), Anoxygenic photosynthetic bacteria (pp. 991–1003). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  19. Madigan, T. M., & Jung, D. O. (2009). An overview of purple bacteria: Systematics, physiology and habitats. In C. N. Hunter, F. Daldal, & B. Thurnauer (Eds.), The purple phototrophic Bacteria (pp. 1–15). Dordrecht: Springer.

    Google Scholar 

  20. Rajasekhar, N., Sasikala, C., & Ramana, C. V. (2000). Toxicity of N-containing heterocyclic aromatic compounds and their utilization for growth by a few purple non-sulfur bacteria. Bull Environ Contam Toxicol, 65(3), 375–382.

    Article  CAS  Google Scholar 

  21. Frank, J., & Gaffron, H. (1941). Photosynthesis. Facts and interpretations Adv Enzymol Relat Subj Biochem, 1, 199–202.

    Google Scholar 

  22. Pfennig, N., Eimhjellen, K. E., & Liaaen-Jensen, S. (1965). A new isolate of the Rhodospirillum fulvum group and its photosynthetic pigments. Arch Mikrobiol, 51, 258–266.

    Article  CAS  Google Scholar 

  23. Wright, G. E., & Madigan, M. T. (1991). Photocatabolism of aromatic compounds by the phototrophic purple bacterium Rhodomicrobiumvannielii. Appl Environ Microbiol, 57(7), 2069–2073.

    Article  CAS  Google Scholar 

  24. Biebl, H., & Pfennig, N. (1981). Isolation of members of the family Rhodospirillaceae. In M. P. Starr, H. Stolp, H. G. Trueper, A. Balows, & H. G. Schlegel (Eds.), The prokaryotes (pp. 167–273). New York: Springer.

    Google Scholar 

  25. Weaver, P. F., Wall, J. D., & Gest, H. (1975). Characterisation of Rhodopseudomonas capsulata Arch Microbiol, 105(1), 207–216.

    Article  CAS  Google Scholar 

  26. Hanada, S., Takaichi, S., Matsuura, K., & Nakamura, K. (2002). Roseiflexuscastenholzii gen. Nov., sp. nov., a thermophilic, filamentous, photosynthetic bacterium that lacks chlorosomes. Int J Syst Evol Microbiol, 52(Pt 1), 187–193.

    Article  CAS  Google Scholar 

  27. Zengler, K., Heider, J., Rossello Mora, R., & Widdel, F. (1999). Phototrophic utilization of toluene under anoxic conditions by a new strain of Blastochloris sulfoviridis. Arch Microbiol, 172(4), 204–212.

    Article  CAS  Google Scholar 

  28. Ramana, C. V., Sasikala, C., Arunasri, K., Anil Kumar, P., Srinivas, T. N. R., Shivaji, S., Gupta, P., Sueling, J., & Imhoff, J. F. (2006). Rubrivivax benzoatilyticus sp. nov., an aromatic, hydrocarbon-degrading purple betaproteobacterium. Int J Syst Evol Microbiol, 56(Pt 9), 2157–2164.

    Article  CAS  Google Scholar 

  29. Nuñal, S. N., Santander-de Leon, S. M. S., Bacolod, E., Koyama, J., Uno, S., Hidaka, M., Yoshikawa, T., & Maeda, H. (2014). Bioremediation of heavily oil-polluted seawater by a bacterial consortium immobilized in cocopeat and rice hull powder. Biocontrol Science, 19(1), 11–22.

    Article  Google Scholar 

  30. Hillmer, P., & Gest, H. (1977). H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: H2 production by growing cultures. J Bacteriol, 129(2), 724–731.

    Article  CAS  Google Scholar 

  31. Nhi-Cong, L. T., Mai, C. T. N., Minh, N. N., Ha, H. P., Lien, D. T., Tuan, D. T., Quyen, D. V., Ike, M., & Uyen, D. T. T. (2016). Degradation of sec-hexylbenzene and its metabolites by a biofilm-forming yeast Trichosporonasahii B1 isolated from oil-contaminated sediments in Quangninh coastal zone, Vietnam. J. Environ. Sci. Health, Part A, 51(3), 267–275.

    Article  CAS  Google Scholar 

  32. Shimada, K., Itoh, Y., Washio, K., & Morikawa, M. (2012). Efficacy of forming biofilms by naphthalene degrading Pseudomonas stutzeri T102 toward bioremediation technology and its molecular mechanisms. Chemosphere, 87(3), 226–233.

    Article  CAS  Google Scholar 

  33. Yamaga, F., Washio, K., & Morikawa, M. (2010). Sustainable biodegradation of phenol by Acinetobacter calcoaceticus P23 isolated from the rhizosphere of duckweed Lemna aoukikusa. Environ Sci Technol, 44(16), 6470–6474.

    Article  CAS  Google Scholar 

  34. Imhoff, J. F., & Trueper, H. G. (1980) Purple non-sulfur bacteria (Rhodospirillaceae Pfening and Trueper 197, 17AL) in: Staley JT, Bryant MP, Pfening N, Holt JG (Eds.), Bergey’ manual of Systematic Bacteriology, vol. 3, Williams and Wilkins, Bantimore, pp. 1438-1680.

  35. Huang, R., Tian, W., Liu, Q., Yu, H., Jin, X., Zhao, Y., Zhou, Y., & Feng, G. (2015). Enhanced biodegradation of pyrene and indeno (1,2,3-cd) pyrene using bacteria immobilized in cinder beads in estuarine wetlands. Mar Pollut Bull. https://doi.org/10.1016/j.marpolbul.2015.11.044.

  36. Nhi-Cong, L. T., Mai, C. N., Thanh, V. T., Nga, L. P., & Minh, N. N. (2014). Application of a biofilm formed by a mixture of yeasts isolated in Vietnam to degrade aromatic hydrocarbon polluted wastewater collected from petroleum storage. Water Sci Technol, 70(2), 329–336.

    Article  Google Scholar 

  37. Kunihiro, N., Haruki, M., Takano, K., Morikawa, M., & Kanaya, S. (2005). Isolation and characterization of Rhodococcussp. Strains TMP2 and T12 that degrade 2,6,10,14-tetramethylpentadecane (pristane) at moderately low temperatures. J. Biotechnol., 115(2), 129–136.

    CAS  Google Scholar 

  38. O’Toole, G. A., Kaplan, H. B., & Kolter, R. (2000). Biofilm formation as microbial development. Annu Rev Microbiol, 54, 49–79.

    Article  Google Scholar 

  39. Deng, F., Liao, C., Yang, C., Guo, C., & Dang, Z. (2016). Enhanced biodegradation of pyrene by immobilized bacteria on modified biomass materials. Inter. Biodeterio. Biodegrad., 110, 46–52.

    Article  CAS  Google Scholar 

  40. Madigan, M. T., Jung, D. O., & Resnick, S. M. (2001). Growth of the purple bacterium Rhodobacter capsulatus on the aromatic compound hippurate. Arch Microbiol, 175(6), 462–465.

    Article  CAS  Google Scholar 

  41. Ramana, V. V., Chakravarthy, S. K., Raj, P. S., Kumar, B. V., Shobha, E., Ramaprasad, E. V. V., Sasikala, C., & Ramana, C. V. (2012). Descriptions of Rhodopseudomonas parapalustris sp. nov., Rhodopseudomonas harwoodiae sp. nov. and Rhodopseudomonas pseudopalustris sp. nov., and emended description of Rhodopseudomonas palustris. Int J Syst Evol Microbiol, 62, 1790–1798.

    Article  CAS  Google Scholar 

  42. Trüper, H. G., & Pfennig, N. (1981). Characterization and identification of the Anoxygenic phototrophic Bacteria. In M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, & H. G. Schlegel (Eds.), The prokaryotes: A handbook of on habitats, isolation and identification of bacteria (pp. 299–311). Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  43. Harwood, C. S. (2009). Degradation of aromatics compounds by purple non-sulfur bacteria. In C. N. Hunter, F. Daldal, & B. Thurnauer (Eds.), The purple phototrophic Bacteria (pp. 577–594). Dordrecht: Springer.

    Chapter  Google Scholar 

Download references

Funding

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 106-NN.04–2015.45, Yayasan Universiti Teknologi PETRONAS under grant number YUTP 015LC0–047 and Fundamental Research Grant Scheme (Malaysia, FRGS/1/2019/STG05/UNIM/02/2).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Le Thi Nhi-Cong or Pau Loke Show.

Ethics declarations

The authors are aware with the ethical responsibilities required by the journal and are committed to comply them.

Conflict of Interest

The authors declare that they have no competing interests.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nhi-Cong, L.T., Lien, D.T., Gupta, B.S. et al. Enhanced Degradation of Diesel Oil by Using Biofilms Formed by Indigenous Purple Photosynthetic Bacteria from Oil-Contaminated Coasts of Vietnam on Different Carriers. Appl Biochem Biotechnol 191, 313–330 (2020). https://doi.org/10.1007/s12010-019-03203-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03203-x

Keywords

Navigation