Skip to main content
Log in

Efficiency of Ionic Liquids–Based Aqueous Two-phase Electrophoresis for Partition of Cytochrome c

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Cytochrome c is a small water-soluble protein that is abundantly found in the mitochondrial intermembrane space of microorganism, plants and mammalians. Ionic liquids (ILs)–based aqueous two-phase electrophoresis system (ATPES) was introduced in this study to investigate the partition efficiency of cytochrome c to facilitate subsequent development of two-phase electrophoresis for the separation of cytochrome c from microbial fermentation. The 1-Hexyl-3-methylimidazolium bromide, (C6mim)Br and potassium citrate salt were selected as the phase-forming components. Effects of phase composition; position of electrodes; pH and addition of neutral salt on the partition efficiency of cytochrome c in the ATPES were evaluated. Highest partition coefficient (K = 179.12 ± 0.82) and yield of cytochrome c in top phase (YT = 99.63% ± 0.00) were recorded with IL/salt ATPES composed of 30% (w/w) (C6mim)Br and 20% (w/w) potassium citrate salt of pH 7 and 3.0% (w/w) NaCl addition with anode at the bottom phase and cathode at the top phase. The SDS-PAGE profile revealed that cytochrome c with a molecular weight of 12 kDa was preferably partitioned to the IL-rich top phase. Present findings suggested that the single-step ATPES is a potential separation approach for the recovery of cytochrome c from microbial fermentation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hüttemann, M., Pecina, P., Rainbolt, M., Sanderson, T., Kagan, V., Samavati, L., Doan, J. W., & Lee, I. (2011). The multiple functions of cytochrome c and their regulation in life and death decisions of the mammalian cell: from respiration to apoptosis. Mitochondrion, 11(3), 369–381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Levy, R. J., & Deutschman, C. S. (2007). Cytochrome c oxidase dysfunction in sepsis. Critical Care Medicine, 35(9 Suppl), S468–S475.

    Article  CAS  PubMed  Google Scholar 

  3. Al-Shakarchi, W., Alsuraifi, A., Abed, M., Abdullah, M., Richardson, A., Curtis, A., & Hoskins, C. (2018). Combined effect of anticancer agents and cytochrome c decorated hybrid nanoparticles for liver cancer therapy. Pharmaceutics, 10, 48.

  4. Morrison, M., Hollocher, T., Murray, R., Marinetti, G., & Stotz, E. (1960). The isolation of cytochrome c by salt extraction. Biochimica et Biophysica Acta, 41, 334–337.

    Article  CAS  PubMed  Google Scholar 

  5. Hagihara, B., Morikawa, I., Sekuzu, I., & Okunuki, K. (1958). Crystalline cytochrome c. I. Crystallization of mammalian heart Cytochrome c. Journal of Biochemistry, 45, 551–563.

    Article  CAS  Google Scholar 

  6. Jolivalt, C., Minier, M., & Renon, H. (1993). Extraction of cytochrome c in sodium dodecylbenzenesulfonate microemulsions. Biotechnology Progress, 9(5), 456–461.

    Article  CAS  PubMed  Google Scholar 

  7. Iqbal, M., Tao, Y., Xie, S., Zhu, Y., Chen, D., Wang, X., Huang, L., Peng, D., Sattar, A., Shabbir, M. A. B., Hussain, H. I., Ahmed, S., & Yuan, Z. (2016). Aqueous two-phase system (ATPS): an overview and advances in its applications. Biological Procedures Online, 18, 1–18.

    Article  CAS  Google Scholar 

  8. Marando, A., & Clark, W. M. (1993). Two-phase electrophoresis of proteins. Separation Science and Technology, 28, 1561–1577.

    Article  CAS  Google Scholar 

  9. Münchow, G., Hardt, S., Kutter, J., & Drese, K. (2006). Protein transport and concentration by electrophoresis in two-phase microflows. Journal of Laboratory Automation, 11, 368–373.

    Article  CAS  Google Scholar 

  10. Li, Z., Pei, Y., Wang, H., Fan, J., & Wang, J. (2010). Ionic liquid-based aqueous two-phase systems and their applications in green separation processes. TrAC, Trends in Analytical Chemistry, 29, 1336–1346.

    Article  CAS  Google Scholar 

  11. Dolnik, V., & Gurske, W. (2011). Chemical modification of proteins to improve the accuracy of their relative molecular mass determination by electrophoresis. Electrophoresis, 32, 2893–2897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yeagle, P. L. (2016). In P. L. Yeagle (Ed.), In the membranes of cells (3rd ed., pp. 219–268). Boston: Academic Press.

    Chapter  Google Scholar 

  13. Lu, Y., Lu, W., Wang, W., Guo, Q., & Yang, Y. (2011). Thermodynamic studies of partitioning behavior of cytochrome c in ionic liquid-based aqueous two-phase system. Talanta, 85, 1621–1626.

    Article  CAS  PubMed  Google Scholar 

  14. Leong, H. Y., Chang, Y.-K., Ooi, C. K., Law, C. L., Julkifle, A. L., & Show, P. L. (2019). Liquid biphasic electric partitioning system as a novel integration process for betacyanins extraction from red-purple pitaya and antioxidant properties assessment. Frontiers in Chemistry, 7, 1–11.

  15. Ng, H. S., Xin Yi Chai, C., Chow, Y. H., Loh, W. L. C., Yim, H. S., Joo Shun, T., & Lan, J. (2018). Direct recovery of Bacillus subtilis xylanase from fermentation broth with an alcohol/salt aqueous biphasic system. Journal of Bioscience and Bioengineering, 125(5), 585–589.

    Article  CAS  PubMed  Google Scholar 

  16. Lee, K.-W., How, C. W., Chen, L., Chen, P. T., Lan, J. C.-W., & Ng, H.-S. (2019). Integrated extractive disruption of Gordonia terrae cells with direct recovery of carotenoids using alcohol/salt aqueous biphasic system. Separation and Purification Technology, 223, 107–112.

    Article  CAS  Google Scholar 

  17. Suarez Ruiz, C. A., van den Berg, C., Wijffels, R. H., & Eppink, M. H. M. (2018). Rubisco separation using biocompatible aqueous two-phase systems. Separation and Purification Technology, 196, 254–261.

    Article  CAS  Google Scholar 

  18. Pei, Y., Wang, J., Wu, K., Xuan, X., & Lu, X. (2009). Ionic liquid-based aqueous two-phase extraction of selected proteins. Separation and Purification Technology, 64, 288–295.

    Article  CAS  Google Scholar 

  19. Ng, H. S., Ooi, C. W., Show, P. L., Tan, C. P., Ariff, A., Moktar, M. N., Ng, E.-P., & Ling, T. C. (2014). Recovery of Bacillus cereus cyclodextrin glycosyltransferase using ionic liquid-based aqueous two-phase system. Separation and Purification Technology, 138, 28–33.

    Article  CAS  Google Scholar 

  20. Desai, R., Streefland, M., Wijffels, R., & Eppink, M. (2014). Extraction and stability of selected proteins in ionic liquid based aqueous two phase systems. Green Chemistry, 5, 2670–2679.

    Article  Google Scholar 

  21. Fang Li, Y., Han, J., Wang, Y., Jing Ma, J., & Yan, S. (2012). Partitioning of cephalexin in ionic liquid aqueous two-phase system composed of 1-butyl-3-methylimidazolium tetrafluoroborate and ZnSO4. Journal of Chemistry, 2023, 1–5.

  22. Liu, Y., Wu, Z., Zhang, Y., & Yuan, H. (2012). Partitioning of biomolecules in aqueous two-phase systems of polyethylene glycol and nonionic surfactant. Biochemical Engineering Journal, 69, 93–99.

    Article  CAS  Google Scholar 

  23. Schluck, A., Maurer, G., Kula, R., & M. (1995). The influence of electrostatic interactions on partition in aqueous polyethylene glycol/dextran biphasic systems: part II. Biotechnology and Bioengineering, 47(2), 252–260.

    Article  CAS  PubMed  Google Scholar 

  24. Ng, H. S., Teoh, A. N., Lim, J. C. W., Tan, J. S., Wan, P. K., Yim, H. S., Show, P. L., & Lan, J. C.-W. (2017). Thermo-sensitive aqueous biphasic extraction of polyphenols from Camellia sinensis var. assamica leaves. Journal of the Taiwan Institute of Chemical Engineers, 79, 151–157.

    Article  CAS  Google Scholar 

  25. Zafarani-Moattar, M. T., & Hamzehzadeh, S. (2011). Effect of pH on the phase separation in the ternary aqueous system containing the hydrophilic ionic liquid 1-butyl-3-methylimidazolium bromide and the kosmotropic salt potassium citrate at T=298.15K. Fluid Phase Equilibria, 304, 110–120.

    Article  CAS  Google Scholar 

  26. Dreyer, S., Salim, P., & Kragl, U. (2009). Driving forces of protein partitioning in an ionic liquid-based aqueous two-phase system. Biochemical Engineering Journal, 46, 176–185.

    Article  CAS  Google Scholar 

  27. Amid, M., Shuhaimi, M., Islam Sarker, M. Z., & Abdul Manap, M. Y. (2012). Purification of serine protease from mango (Mangifera Indica Cv. Chokanan) peel using an alcohol/salt aqueous two phase system. Food Chemistry, 132(3), 1382–1386.

    Article  CAS  PubMed  Google Scholar 

  28. Ho, S. L., Lan, J. C.-W., Tan, J. S., Yim, H. S., & Ng, H. S. (2017). Aqueous biphasic system for the partial purification of Bacillus subtilis carboxymethyl cellulase. Process Biochemistry, 58, 276–281.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the UCSI University Pioneer Scientist Incentive Funds under grant numbers [PROJ-In-FAS-027 and PROJ-2019-In-FAS-064] and Taiwan’s Ministry of Science and Technology under grant number [MOST 107-2621-M-155-001].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to John Chi-Wei Lan or Hui-Suan Ng.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kee, P.E., Lan, J.CW., Yim, H.S. et al. Efficiency of Ionic Liquids–Based Aqueous Two-phase Electrophoresis for Partition of Cytochrome c. Appl Biochem Biotechnol 191, 376–386 (2020). https://doi.org/10.1007/s12010-019-03202-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03202-y

Keywords

Navigation