Skip to main content

Advertisement

Log in

Capturing and Clinical Applications of Circulating Tumor Cells with Wave Microfluidic Chip

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

As a “liquid biopsy,” circulating tumor cell (CTC) enumeration with microfluidic chips has great significance in cancer prognosis. CTCs carry significant information as the original tumor. Integrated microfluidic chips are combining with affinity- and physical-based such as wave chip offers a new way to segregate CTCs. In this work, we further study capturing clinical applications of CTCs with wave chip. When cell suspension moves across the microposts array, CTCs squeeze out from narrow gaps organized by microposts. This movement renders CTCs to obtain a tilted velocity to fluid direction. This tilted velocity would direct CTCs to be captured by the smaller neighboring gaps next array. Simultaneously, interaction or friction time is longer due to barrier of modified microposts. These microposts would be effective for realizing binding of antigen and antibody. Therefore, both antibody-coated and physical-based isolations could be combined in isolating CTCs. Capture percentage concentrated on the first several arrays is shown theoretically and experimentally. Efficient capture could be obtained for artificial patient blood. Clinically, CTCs were tested positive for three metastatic human breast cancer patient samples. This wave chip is prospectively to be a valid tool for clinical enumeration of CTCs, carrying out anti-cancer drug assay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pantel, K., Brakenhoff, R. H., & Brandt, B. (2008). Detection, clinical relevance and specific biological properties of disseminating tumor cells. Nature Reviews Cancer, 8(5), 329–340.

    Article  CAS  Google Scholar 

  2. Mehlen, P., & Puisieux, A. (2006). Metastasis: a question of life or death. Nature Reviews Cancer, 6(6), 449.

    Article  CAS  Google Scholar 

  3. Fehm, T., Morrison, L., Saboorian, H., Hynan, L., Tucker, T., & Uhr, J. (2002). Patterns of aneusomy for three chromosomes in individual cells from breast cancer tumors. Breast Cancer Research and Treatment, 75, 227.

    Article  CAS  Google Scholar 

  4. Cristofabilli, M., Budd, G. T., Stopeck, A., Matera, J., Miller, M. C., Reuben, J. M., Doyle, G. V., Allard, W. J., Terstappen, L. W., & Hayes, D. F. (2004). Circulating tumor cells, disease progression, and survival in metastatic breast cancer. The New England Journal of Medicine, 351, 781.

    Article  Google Scholar 

  5. Fan, T., Zhao, Q., Chen, J. J., Chen, W.-T., & Pearl, M. L. (2009). Clinical significance of circulating tumor cells detected by an invasion assay in peripheral blood of patients with ovarian cancer. Gynecologic Oncology, 112, 185.

    Article  CAS  Google Scholar 

  6. Hsiao, Y.-S., Ho, B.-C., Yan, H.-X., Kuo, C.-W., Chueh, D.-Y., Yu, H.-H., & Chen, P. (2015). Integrated 3D conducting polymer-based bioelectronics for capture and release of circulating tumor cells. Journal of Materials Chemistry B, 3(25), 5103–5110.

    Article  CAS  Google Scholar 

  7. Sollier, E., Go, D. E., Che, J., Gossett, D. R., O’Byrne, S., Weaver, W. M., Kummer, N., Rettig, M., Goldman, J., Nickols, N., McCloskey, S., Kulkarni, R. P., & Di Carlo, D. (2014). Size-selective collection of circulating tumor cells using Vortex technology. Lab on a Chip, 14(1), 63–77.

    Article  CAS  Google Scholar 

  8. Attard, G., Swennenhuis, J. F., Olmos, D., Reid, A. H., Vickers, E., A'Hern, R., Levink, R., Coumans, F., Moreira, J., Riisnaes, R., Oommen, N. B., Hawche, G., Jameson, C., Thompson, E., Sipkema, R., Carden, C. P., Parker, C., Dearnaley, D., Kaye, S. B., Cooper, C. S., Molina, A., Cox, M. E., Terstappen, L. W. M. M., & de Bono, J. S. (2009). Characterization of ERG, AR and PTEN gene status in circulating tumor cells from patients with castration-resistant prostate cancer. Cancer Research, 69(7), 2912–2918.

    Article  CAS  Google Scholar 

  9. Hyun, K. A., & Jung, H. I. (2014). Advances and critical concerns with the microfluidic enrichments of circulating tumor cells. Lab on a Chip, 14(1), 45–56.

    Article  CAS  Google Scholar 

  10. Nagrath, S., Sequist, L. V., Maheswaran, S., Bell, D. W., Irimia, D., Ulkus, L., Smith, M. R., Kwak, E. L., Digumarthy, S., & Muzikansky, A. (2007). Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature, 450(7173), 1235–1239.

    Article  CAS  Google Scholar 

  11. Stott, S. L., Hsu, C.-H., Tsukrov, D. I., Yu, M., Miyamoto, D. T., Waltman, B. A., Rothenberg, S. M., Shah, A. M., Smas, M. E., Korir, G. K., Floyd, F. P., Gilman, A. J., Lord, J. B., Winokur, D., Springer, S., Irimia, D., Nagrath, S., Sequist, L. V., Lee, R. J., Isselbache, K. J., Maheswaran, S., Haber, D. A., & Toner, M. (2010). Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proceedings of the National Academy of Sciences of the United States of America, 107(43), 18392–18397.

    Article  CAS  Google Scholar 

  12. Yoon, H. J., Kim, T. H., Zhang, Z., Azizi, E., Pham, T. M., Paoletti, C., Lin, J., Ramnath, N., Wicha, M. S., Hayes, D. F., Simeone, D. M., & Nagrath, S. (2013). Sensitive capture of circulating tumour cells by functionalised graphene oxide nanosheets. Nature Nanotechnology, 8(10), 735–741.

    Article  CAS  Google Scholar 

  13. Li, N., Xiao, T., Zhang, Z., He, W., Cao, Y., Zhang, W., & Chen, Y. (2015). A 3D graphene oxide microchip and a Au-enwrapped silica nanocomposite-based supersandwich cytosensor toward capture and analysis of circulating tumor cells. Nanoscale, 7, 16354–16360.

    Article  CAS  Google Scholar 

  14. Murlidhar, V., Zeinali, M., Grabauskiene, S., Ghannad-Rezaie, M., Wicha, M. S., Simeone, M., Ramnath, N., Reddy, R. M., & Nagrath, S. (2014). A radial flow microfluidic device for ultra-high-throughput affinity-based isolation of circulating tumor cells. Small, 10, 4895–4904.

    Article  CAS  Google Scholar 

  15. Yoon, H. J., Shanker, A., Wang, Y., Kozminsky, M., Jin, Q., Palanisamy, N., Burness, M. L., Azizi, E., Simeone, D. M., Wicha, M. S., Kim, J., & Nagrath, S. (2016). Tunable thermal-sensitive polymer-graphene oxide composite for efficient capture and release of viable circulating tumor cells. Advanced Materials, 28(24), 4891–4897.

    Article  CAS  Google Scholar 

  16. Shah, P., Kaushik, A., Zhu, X., Zhang, C., & Li, C. (2014). Chip based single cell analysis for nanotoxicity assessment. Analyst, 139(9), 2088–2098.

    Article  CAS  Google Scholar 

  17. Shah, P., Zhu, X., Chen, C., Hu, Y., & Li, C. Z. (2014). Lab-on-chip device for single cell trapping and analysis. Biomedical Microdevices, 16(1), 35–41.

    Article  Google Scholar 

  18. Zhang, Z., Xu, J., & Drapaca, C. (2018). Particle squeezing in narrow confinements. Microfluidics and Nanofluidics, 22, 120.

    Article  Google Scholar 

  19. Zhang, Z., Drapaca, C., Chen, X., & Xu, J. (2017). Droplet squeezing through a narrow constriction minimum impulse and critical velocity. Physics of Fluids, 29, 072102.

    Article  Google Scholar 

  20. Di Carlo, D., Irimia, D., Tompkins, R. G., & Toner, M. (2007). Continuous inertial focusing, ordering, and separation of particles in microchannels. Proceedings of the National Academy of Sciences, 104(48), 18892–18897.

    Article  Google Scholar 

  21. Li, P., Mao, Z., Peng, Z., Zhou, L., Chen, Y., .Huang, P.-H., Truica, C. I., Drabick, J. J., El-Deiry, W. S., & Dao, M., (2015) Acoustic separation of circulating tumor cells. Proceedings of the National Academy of Sciences, 112(16), 4970–4975.

    Article  CAS  Google Scholar 

  22. Zhang, Z., Xu, J., Hong, B., & Chen, X. (2014). The effects of 3D channel geometry on CTC passing pressure-towards deformability-based cancer cell separation. Lab on a Chip, 14(14), 2576–2584.

    Article  CAS  Google Scholar 

  23. Ahmmed, S. M., Bithi, S. S., Pore, A. A., Mubtasim, N., Schuster, C., Gollahon, L. S., & Vanapalli, S. A. (2018). Multi-sample deformability cytometry of cancer cells. APL Bioeng., 2(3), 032002.

    Article  Google Scholar 

  24. Shi, W., Wang, S., Maarouf, A., Uhl, C. G., He, R., Yunus, D., & Liu, Y. (2017). Magnetic particles assisted capture and release of rare circulating tumor cells using wavy-herringbone structured microfluidic devices. Lab on a Chip, 17(19), 3291–3299.

    Article  CAS  Google Scholar 

  25. Liu, F., KC, P., Zhang, G., & Zhe, J. (2015). Microfluidic magnetic bead assay for cell detection. Analytical Chemistry, 88(1), 711–717.

    Article  Google Scholar 

  26. Chen, H., Zhang, Z., Liu, H., Zhang, Z., Lin, C., & Wang, B. (2019). Hybrid magnetic and deformability based isolation of circulating tumor cells using microfluidics. AIP Advances, 9, 025023.

    Article  Google Scholar 

  27. Chen, H., Zhang, Z., & Wang, B. (2018). Size and deformability-based isolation of circulating tumor cells with microfluidic chips and their clinical studies. AIP Advances, 8, 120701.

    Article  Google Scholar 

  28. Chen, H., & Zhang, Z. (2018). An inertia-deformability hybrid CTC chip: design, clinical test and numerical study. Journal of medical devices, ASME, 12, 041004–041001.

    Article  Google Scholar 

  29. Chen H., Cao B.,Sun B., Cao Y., Yang K.,& Lin Y(2017) Highly-sensitive capture of circulating tumor cells using micro-ellipse filters. Scientific Reports, 7:610.

  30. Gogoi, P., Sepehri, S., Zhou, Y., Gorin, M. A., Paolillo, C., Capoluongo, E., Gleason, K., Payne, A., Boniface, B., Cristofanilli, M., Mogan, T. M., Fortina, P., Pienta, K. J., Handique, K., & Wang, Y. (2016). Development of an automated and sensitive microfluidic device for capturing and characterizing circulating tumor cells (CTCs) from clinical blood samples. PLoS One, 11(1), e0147400.

    Article  Google Scholar 

  31. Tan, J., Sohrabi, S., He, R., & Liu, Y. (2018). Numerical simulation of cell squeezing through a micropore by the immersed boundary method. Proc.Inst. Mech. Eng., Part C, 232(3), 502–514.

    Article  Google Scholar 

  32. Mohamed, H., Murray, M., Turner, J. N., & Caggana, M. (2009). Isolation of tumor cells using size and deformation. Journal of Chromatography. A, 1216(47), 8289–8295.

    Article  CAS  Google Scholar 

  33. Ahmmed, S. M., Suteria, N. S., Garbin, V., & Vanapalli, S. A. (2018). Hydrodynamic mobility of confined polymeric particles, vesicles, and cancer cells in a square microchannel. Biomicrofluidics, 12(1), 014114.

    Article  Google Scholar 

  34. Sarioglu, F., Aceto, A., Kojic, N., Donaldson, M. C., Zeinali, M., Hamza, B., Engstrom, A., Hamza, B., Zeigstrom, A., Zhu, H., Sundaresan, T. K., Miyamoto, D. T., Luo, X., Bardia, A., Wittner, B. S., Ramaswamy, S., Shiodae, T., Ting, D. T., Stott, S. L., Kapur, R., Maheswaran, S., Haber, D. A., & Toner, M. (2015). A microfluidic device for label-free, physical capture of circulating tumor cell clusters. Nature Methods, 12(7), 685–691.

    Article  CAS  Google Scholar 

  35. Kim, T. H., Yoon, H. J., Stella, P., & Nagrath, S. (2014). Cascaded spiral microfluidic device for deterministic and high purity continuous separation of circulating tumor cells. Biomicrofluidics, 8, 064117.

    Article  Google Scholar 

  36. Todenhofer, T., Park, E. S., Duffy, S., Deng, X., Jin, C., Abdi, H., Ma, H., & Black, P. C. (2016). Microfluidic enrichment of circulating tumor cells in patients with clinically localized prostate cancer. Urologic oncology, 34(11), 483.e9–483.e16.

    Article  Google Scholar 

  37. Kim, M. S. (2012). SSA-MOA: a novel CTC isolation platform using selective size amplification (SSA) and a multi-obstacle architecture (MOA) filter. Lab on a Chip, 12(16), 2874–2880.

    Article  CAS  Google Scholar 

  38. Hosseini, S. A., Abdolahad, M., Dahmardeh, M., Gharooni, M., Abiri, H., Alikhani, A. S., Mohajerzadeh, A. S., & Mashinchian, O. (2016). Nanoelectromechanical chip (NELMEC) combination of nanoelectronics and microfluidics to diagnose epithelial and mesenchymal circulating tumor cells from leukocytes. Small, 12(7), 883–891.

    Article  CAS  Google Scholar 

  39. Li, D., Zhang, Y., Li, R., Guo, J., Wang, J., & Tang, C. (2015). Selective capture and quick detection of targeting cells with SERS-coding microsphere suspension chip. Small, 11, 2200.

    Article  CAS  Google Scholar 

  40. Chung, J., Issadore, D., Ullal, A., Lee, K., Weissleder, R., & Lee, H. (2013). Rare cell isolation and profiling on a hybrid magnetic/size-sorting chip. Biomicrofluidics, 7, 9.

    Article  Google Scholar 

  41. Chen, H., Chen, H., Lin, Y., & Zhang, J. (2017). Combination of antibody-coated, physical-based microfluidic chip with wave-shaped arrays for isolating circulating tumor cells. Biomedical Microdevices, 19(3), 66.

    Article  Google Scholar 

Download references

Funding

This research work was supported by the Anhui Natural Science Foundation of China (1908085MF197) and Postdoctoral Research Funding (2014M550794).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongmei Chen.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Human Participants and/or Animals

Patient blood samples were supplied by Longhua Hospital Affiliated to Shanghai Medical University under approval.

Informed Consent

The manuscript is approved by all authors for publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H. Capturing and Clinical Applications of Circulating Tumor Cells with Wave Microfluidic Chip. Appl Biochem Biotechnol 190, 1470–1483 (2020). https://doi.org/10.1007/s12010-019-03199-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03199-4

Keywords

Navigation