Skip to main content

Advertisement

Log in

A KLVFFAE-Derived Peptide Probe for Detection of Alpha-Synuclein Fibrils

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Aggregation of an amyloid protein, α-synuclein (αS), is a critical step in the neurodegenerative pathway of Parkinson’s diseases (PD). Specific detection of amyloid conformers (i.e., monomers, oligomers, and fibrils) produced during αS aggregation is critical in better understanding a molecular basis of PD and developing a diagnostic tool. While various molecular probes are available for detection of αS fibrils, which may serve as a reservoir of toxic αS aggregate forms, these probes suffer from limited conformer-specificity and operational flexibility. In the present study, we explored the potential of non-self-aggregating peptides derived from the highly aggregation-prone KLVFFAE region of an amyloid protein, β-amyloid, as molecular probes for αS aggregates. We show that of the four peptides tested (KLVFWAK, ELVFWAE, and their C-terminal capping variants, all of which were attached with fluorescein isothiocyanate at their respective N-termini), KLVFWAK with C-terminal capping was selectively bound to αS fibrils over monomers and oligomers and readily used for monitoring αS fibrilization. Our analyses suggest that binding of the peptide to αS fibrils is mediated by both electrostatic and hydrophobic interactions. We anticipate that our peptide can readily be optimized for conformer-specificity and operational flexibility. Overall, this study presents the creation of a KLVFFAE-based molecular probe for αS fibrils and demonstrates fine-tuning of its conformer-specificity by terminal mutations and capping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Reiss, A. B., Arain, H. A., Stecker, M. M., Siegart, N. M., & Kasselman, L. J. (2018). Amyloid toxicity in Alzheimer's disease. Reviews in the Neurosciences, 29(6), 613–627.

    CAS  PubMed  Google Scholar 

  2. Lashuel, H. A., Overk, C. R., Oueslati, A., & Masliah, E. (2013). The many faces of alpha-synuclein: from structure and toxicity to therapeutic target. Nature Reviews. Neuroscience, 14(1), 38–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Buell, A. K., Galvagnion, C., Gaspar, R., Sparr, E., Vendruscolo, M., Knowles, T. P., Linse, S., & Dobson, C. M. (2014). Solution conditions determine the relative importance of nucleation and growth processes in alpha-synuclein aggregation. Proceedings of the National Academy of Sciences of the United States of America, 111(21), 7671–7676.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Tipping, K. W., van Oosten-Hawle, P., Hewitt, E. W., & Radford, S. E. (2015). Amyloid fibres: inert end-stage aggregates or key players in disease? Trends in Biochemical Sciences, 40(12), 719–727.

    CAS  PubMed  Google Scholar 

  5. Tipping, K. W., Karamanos, T. K., Jakhria, T., Iadanza, M. G., Goodchild, S. C., Tuma, R., Ranson, N. A., Hewitt, E. W., & Radford, S. E. (2015). pH-induced molecular shedding drives the formation of amyloid fibril-derived oligomers. Proceedings of the National Academy of Sciences of the United States of America, 112(18), 5691–5696.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Koffie, R. M., Meyer-Luehmann, M., Hashimoto, T., Adams, K. W., Mielke, M. L., Garcia-Alloza, M., Micheva, K. D., Smith, S. J., Kim, M. L., Lee, V. M., Hyman, B. T., & Spires-Jones, T. L. (2009). Oligomeric amyloid beta associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. Proceedings of the National Academy of Sciences of the United States of America, 106(10), 4012–4017.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Cremades, N., Cohen, S. I., Deas, E., Abramov, A. Y., Chen, A. Y., Orte, A., Sandal, M., Clarke, R. W., Dunne, P., Aprile, F. A., Bertoncini, C. W., Wood, N. W., Knowles, T. P., Dobson, C. M., & Klenerman, D. (2012). Direct observation of the interconversion of normal and toxic forms of alpha-synuclein. Cell, 149(5), 1048–1059.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Cho, J. E., & Kim, J. R. (2011). Recent approaches targeting beta-amyloid for therapeutic intervention of Alzheimer's disease. Recent Patents on CNS Drug Discovery, 6(3), 222–233.

    CAS  PubMed  Google Scholar 

  9. Madav, Y., Wairkar, S., & Prabhakar, B. (2019). Recent therapeutic strategies targeting beta amyloid and tauopathies in Alzheimer's disease. Brain Research Bulletin, 146, 171–184.

    CAS  PubMed  Google Scholar 

  10. Irvine, G. B., El-Agnaf, O. M., Shankar, G. M., & Walsh, D. M. (2008). Protein aggregation in the brain: the molecular basis for Alzheimer's and Parkinson's diseases. Molecular Medicine, 14(7-8), 451–464.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hu, Y., Su, B., Zheng, H., & Kim, J. R. (2012). A peptide probe for detection of various beta-amyloid oligomers. Molecular BioSystems, 8(10), 2741–2752.

    CAS  PubMed  Google Scholar 

  12. Reinke, A. A., & Gestwicki, J. E. (2011). Insight into amyloid structure using chemical probes. Chemical Biology & Drug Design, 77(6), 399–411.

    CAS  Google Scholar 

  13. Biancalana, M., & Koide, S. (2010). Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochimica et Biophysica Acta, 1804(7), 1405–1412.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu, C., Wang, Z., Lei, H., Duan, Y., Bowers, M. T., & Shea, J. E. (2008). The binding of thioflavin T and its neutral analog BTA-1 to protofibrils of the Alzheimer's disease Abeta(16-22) peptide probed by molecular dynamics simulations. Journal of Molecular Biology, 384(3), 718–729.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ryan, D. A., Narrow, W. C., Federoff, H. J., & Bowers, W. J. (2010). An improved method for generating consistent soluble amyloid-beta oligomer preparations for in vitro neurotoxicity studies. Journal of Neuroscience Methods, 190(2), 171–179.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Maezawa, I., Hong, H. S., Liu, R., Wu, C. Y., Cheng, R. H., Kung, M. P., Kung, H. F., Lam, K. S., Oddo, S., Laferla, F. M., & Jin, L. W. (2008). Congo red and thioflavin-T analogs detect Abeta oligomers. Journal of Neurochemistry, 104(2), 457–468.

    CAS  PubMed  Google Scholar 

  17. Naiki, H., Higuchi, K., Hosokawa, M., & Takeda, T. (1989). Fluorometric determination of amyloid fibrils in vitro using the fluorescent dye, thioflavin T1. Analytical Biochemistry, 177(2), 244–249.

    CAS  PubMed  Google Scholar 

  18. Crystal, A. S., Giasson, B. I., Crowe, A., Kung, M. P., Zhuang, Z. P., Trojanowski, J. Q., & Lee, V. M. (2003). A comparison of amyloid fibrillogenesis using the novel fluorescent compound K114. Journal of Neurochemistry, 86(6), 1359–1368.

    CAS  PubMed  Google Scholar 

  19. Lindgren, M., Sorgjerd, K., & Hammarstrom, P. (2005). Detection and characterization of aggregates, prefibrillar amyloidogenic oligomers, and protofibrils using fluorescence spectroscopy. Biophysical Journal, 88(6), 4200–4212.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Schmidt, M. L., Schuck, T., Sheridan, S., Kung, M. P., Kung, H., Zhuang, Z. P., Bergeron, C., Lamarche, J. S., Skovronsky, D., Giasson, B. I., Lee, V. M., & Trojanowski, J. Q. (2001). The fluorescent Congo red derivative, (trans, trans)-1-bromo-2,5-bis-(3-hydroxycarbonyl-4-hydroxy)styrylbenzene (BSB), labels diverse beta-pleated sheet structures in postmortem human neurodegenerative disease brains. The American Journal of Pathology, 159(3), 937–943.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Volkova, K. D., Kovalska, V. B., Balanda, A. O., Vermeij, R. J., Subramaniam, V., Slominskii, Y. L., & Yarmoluk, S. M. (2007). Cyanine dye-protein interactions: looking for fluorescent probes for amyloid structures. Journal of Biochemical and Biophysical Methods, 70(5), 727–733.

    CAS  PubMed  Google Scholar 

  22. Reinke, A. A., Abulwerdi, G. A., & Gestwicki, J. E. (2010). Quantifying prefibrillar amyloids in vitro by using a "thioflavin-like" spectroscopic method. Chembiochem, 11(13), 1889–1895.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee, D., Kim, S. M., Kim, H. Y., & Kim, Y. (2019). Fluorescence chemicals to detect insoluble and soluble amyloid-beta aggregates. ACS Chemical Neuroscience, 10(6), 2647–2657.

    CAS  PubMed  Google Scholar 

  24. Klunk, W. E., Jacob, R. F., & Mason, R. P. (1999). Quantifying amyloid beta-peptide (A beta) aggregation using the Congo red A beta (CR-A beta) spectrophotometric assay. Analytical Biochemistry, 266(1), 66–76.

    CAS  PubMed  Google Scholar 

  25. Rouet, R., Lowe, D., & Christ, D. (2014). Stability engineering of the human antibody repertoire. FEBS Letters, 588(2), 269–277.

    CAS  PubMed  Google Scholar 

  26. Aoraha, E., Candreva, J., & Kim, J. R. (2015). Engineering of a peptide probe for beta-amyloid aggregates. Molecular BioSystems, 11(8), 2281–2289.

    CAS  PubMed  Google Scholar 

  27. Candreva, J., Chau, E., Aoraha, E., Nanda, V., & Kim, J. R. (2018). Hetero-assembly of a dual beta-amyloid variant peptide system. Chemical Communications (Cambridge), 54(49), 6380–6383.

    CAS  Google Scholar 

  28. Charlton, T., Shah, V., Lynch, T., Candreva, J., Chau, E., Yang, Y., Kim, H., Wood, A., & Kim, J. R. (2018). Amyloid aggregation of Bacillus circulans xylanase under native conditions and its modulation by beta-amyloid-derived peptide fragments. Chembiochem, 19(24), 2566–2574.

    CAS  PubMed  Google Scholar 

  29. Tao, K., Wang, J., Zhou, P., Wang, C., Xu, H., Zhao, X., & Lu, J. R. (2011). Self-assembly of short abeta(16-22) peptides: effect of terminal capping and the role of electrostatic interaction. Langmuir, 27(6), 2723–2730.

    CAS  PubMed  Google Scholar 

  30. Conway, K. A., Harper, J. D., & Lansbury, P. T. (1998). Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nature Medicine, 4(11), 1318–1320.

    CAS  PubMed  Google Scholar 

  31. Greenbaum, E. A., Graves, C. L., Mishizen-Eberz, A. J., Lupoli, M. A., Lynch, D. R., Englander, S. W., Axelsen, P. H., & Giasson, B. I. (2005). The E46K mutation in alpha-synuclein increases amyloid fibril formation. The Journal of Biological Chemistry, 280(9), 7800–7807.

    CAS  PubMed  Google Scholar 

  32. Tashiro, M., Kojima, M., Kihara, H., Kasai, K., Kamiyoshihara, T., Ueda, K., & Shimotakahara, S. (2008). Characterization of fibrillation process of alpha-synuclein at the initial stage. Biochemical and Biophysical Research Communications, 369(3), 910–914.

    CAS  PubMed  Google Scholar 

  33. Hernandez, M., Hu, Y., & Kim, J. R. (2013). A conformation-switching fluorescent protein probe for detection of alpha synuclein oligomers. Chemical Communications (Cambridge), 49(91), 10712–10714.

    CAS  Google Scholar 

  34. Hernandez, M., Golbert, S., Zhang, L. G., & Kim, J. R. (2011). Creation of aggregation-defective alpha-synuclein variants by engineering the sequence connecting beta-strand-forming domains. Chembiochem, 12(17), 2630–2639.

    CAS  PubMed  Google Scholar 

  35. Celej, M. S., Sarroukh, R., Goormaghtigh, E., Fidelio, G. D., Ruysschaert, J. M., & Raussens, V. (2012). Toxic prefibrillar alpha-synuclein amyloid oligomers adopt a distinctive antiparallel beta-sheet structure. Biochemical Journal, 443(3), 719–726.

    CAS  PubMed  Google Scholar 

  36. McMasters, M. J., Hammer, R. P., & McCarley, R. L. (2005). Surface-induced aggregation of beta amyloid peptide by co-substituted alkanethiol monolayers supported on gold. Langmuir, 21(10), 4464–4470.

    CAS  PubMed  Google Scholar 

  37. Greenfield, N. J. (2006). Using circular dichroism spectra to estimate protein secondary structure. Nature Protocols, 1(6), 2876–2890.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim, J. R., & Murphy, R. M. (2004). Mechanism of accelerated assembly of beta-amyloid filaments into fibrils by KLVFFK(6). Biophysical Journal, 86(5), 3194–3203.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Der-Sarkissian, A., Jao, C. C., Chen, J., & Langen, R. (2003). Structural organization of alpha-synuclein fibrils studied by site-directed spin labeling. The Journal of Biological Chemistry, 278(39), 37530–37535.

    CAS  PubMed  Google Scholar 

  40. Chen, M., Margittai, M., Chen, J., & Langen, R. (2007). Investigation of alpha-synuclein fibril structure by site-directed spin labeling. The Journal of Biological Chemistry, 282(34), 24970–24979.

    CAS  PubMed  Google Scholar 

  41. Heise, H., Hoyer, W., Becker, S., Andronesi, O. C., Riedel, D., & Baldus, M. (2005). Molecular-level secondary structure, polymorphism, and dynamics of full-length alpha-synuclein fibrils studied by solid-state NMR. Proceedings of the National Academy of Sciences of the United States of America, 102(44), 15871–15876.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Tuttle, M. D., Comellas, G., Nieuwkoop, A. J., Covell, D. J., Berthold, D. A., Kloepper, K. D., Courtney, J. M., Kim, J. K., Barclay, A. M., Kendall, A., Wan, W., Stubbs, G., Schwieters, C. D., Lee, V. M., George, J. M., & Rienstra, C. M. (2016). Solid-state NMR structure of a pathogenic fibril of full-length human alpha-synuclein. Nature Structural & Molecular Biology, 23(5), 409–415.

    CAS  Google Scholar 

  43. Qin, Z., Hu, D., Han, S., Hong, D. P., & Fink, A. L. (2007). Role of different regions of alpha-synuclein in the assembly of fibrils. Biochemistry, 46(46), 13322–13330.

    CAS  PubMed  Google Scholar 

  44. Apetri, M. M., Maiti, N. C., Zagorski, M. G., Carey, P. R., & Anderson, V. E. (2006). Secondary structure of alpha-synuclein oligomers: characterization by raman and atomic force microscopy. Journal of Molecular Biology, 355(1), 63–71.

    CAS  PubMed  Google Scholar 

  45. Stsiapura, V. I., Maskevich, A. A., Kuzmitsky, V. A., Turoverov, K. K., & Kuznetsova, I. M. (2007). Computational study of thioflavin T torsional relaxation in the excited state. The Journal of Physical Chemistry. A, 111(22), 4829–4835.

    CAS  PubMed  Google Scholar 

  46. Rahbarnia, L., Farajnia, S., Babaei, H., Majidi, J., Veisi, K., Ahmadzadeh, V., & Akbari, B. (2017). Evolution of phage display technology: from discovery to application. Journal of Drug Targeting, 25(3), 216–224.

    CAS  PubMed  Google Scholar 

  47. Wan, J., & Alewood, P. F. (2016). Peptide-decorated dendrimers and their bioapplications. Angewandte Chemie (International Ed. in English), 55(17), 5124–5134.

    CAS  Google Scholar 

Download references

Acknowledgments

The research reported in this article was supported by the NIH/NIA Grant R21AG049137. We thank the Small Instrument Fleet of New York University (NYULMC) for the use of the Typhoon Trio Phosphoimaging System.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Ryoun Kim.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wood, A., Chau, E., Yang, Y. et al. A KLVFFAE-Derived Peptide Probe for Detection of Alpha-Synuclein Fibrils. Appl Biochem Biotechnol 190, 1411–1424 (2020). https://doi.org/10.1007/s12010-019-03197-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03197-6

Keywords

Navigation