Skip to main content
Log in

Evaluation of Anticancer Activities of Novel Facile Synthesized Calix[n]arene Sulfonamide Analogs

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Here, new calixarene sulfonamide analogs were synthesized from the reaction of chlorosulfonated calix[n]arene (n: 4, 6, and 8) with N,N′-dimethylethylenediamine or ethylenediamine for the first time and an excellent calixarene sulfonamide analog showing potent and selective cytotoxic activity on some cancer cell lines were discovered. Cytotoxicity of the prepared calix[n]arene sulfonamide analogs towards both cancer and healthy cell lines was assessed by performing cell growth inhibition assays. In cytotoxicity assay results, it was observed that while sulfonamide analog based calix[4]arene (9) was not affecting the growth of epithelial cell lines (HEK), and it was especially effective on inhibiting the growth of some human cancer cell lines (MCF-7 and MIA PaCa-2). These results highlight that sulfonamide analog–based calix [4] arene (9) can be further studied as a potential anticancer agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yousaf, A., Hamid, S. A., Bunnori, N. M., & Ishola, A. A. (2015). Applications of calixarenes in cancer chemotherapy: facts and perspectives. Drug Design, Development and Therapy, 9, 2831–2838.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Drews, J. (2000). Drug discovery: a historical perspective. Science, 287(5460), 1960–1964.

    CAS  PubMed  Google Scholar 

  3. Supuran, C. T., & Scozzafava, A. (2000). Carbonic anhydrase inhibitors and their therapeutic potential. Expert Opinion on Therapeutic Patents, 10(5), 575–600.

    CAS  Google Scholar 

  4. Supuran, C. T., & Scozzafava, A. (2002). Applications of carbonic anhydrase inhibitors and activators in therapy. Expert Opinion on Therapeutic Patents, 12(2), 217–242.

    CAS  Google Scholar 

  5. Alyar, S., Şen, T., Özmen, Ü. Ö., Alyar, H., Adem, Ş., & Şen, C. (2019). Synthesis, spectroscopic characterizations, enzyme inhibition, molecular docking study and DFT calculations of new Schiff bases of sulfa drugs. Journal of Molecular Structure, 1185, 416–424.

    CAS  Google Scholar 

  6. Noubigh, A., & Akremi, A. (2019). Solution thermodynamics of trans-cinnamic acid in (methanol+ water) and (ethanol+ water) mixtures at different temperatures. Journal of Molecular Liquids, 274, 752–758.

    CAS  Google Scholar 

  7. Casini, A., Scozzafava, A., & Supuran, C. T. (2002). Sulfonamide derivatives with protease inhibitory action as anticancer, anti-inflammatory and antiviral agents. Expert Opinion on Therapeutic Patents, 12(9), 1307–1327.

    CAS  Google Scholar 

  8. Jacobsen, E. J., & Skaletzky, L. L. (1999). U.S. Patent No. 5,859,061. Washington, DC: U.S. Patent and Trademark Office.

  9. Andresen, B. M., Hammen, P. D., & Hawkins, J. M. (2000). U.S. Patent No. 6,114,568. Washington, DC: U.S. Patent and Trademark Office.

  10. Capasso, C., & Supuran, C. T. (2014). Sulfa and trimethoprim-like drugs–antimetabolites acting as carbonic anhydrase, dihydropteroate synthase and dihydrofolate reductase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 29(3), 379–387.

    CAS  PubMed  Google Scholar 

  11. Muthuramalingam, M., White, J. C., Murphy, T., Ames, J. R., & Bourne, C. R. (2019). The toxin from a ParDE toxin-antitoxin system found in Pseudomonas aeruginosa offers protection to cells challenged with anti-gyrase antibiotics. Molecular Microbiology, 111(2), 441–454.

    CAS  PubMed  Google Scholar 

  12. Han, T., Goralski, M., Gaskill, N., Capota, E., Kim, J., Ting, T. C., & Nijhawan, D. (2017). Anticancer sulfonamides target splicing by inducing RBM39 degradation via recruitment to DCAF15. Science, 356(6336), eaal3755.

    PubMed  Google Scholar 

  13. Gutsche, C. D., & Nam, K. C. (1988). Calixarenes. 22. Synthesis, properties, and metal complexation of aminocalixarenes. Journal of the American Chemical Society, 110(18), 6153–6162.

    CAS  PubMed  Google Scholar 

  14. Sharma, V. S., Singh, H. K., Vekariya, R. H., Sharma, A. S., & Patel, R. B. (2017). Mesomorphic properties of novel supramolecular calix [4] arene Schiff base ester derivatives: design and biological investigation. ChemistrySelect, 2(27), 8596–8606.

    CAS  Google Scholar 

  15. Hussain, M. A., Ashraf, M. U., Muhammad, G., Tahir, M. N., & Bukhari, S. N. A. (2017). Calixarene: a versatile material for drug design and applications. Current Pharmaceutical Design, 23(16), 2377–2388.

    CAS  PubMed  Google Scholar 

  16. Consoli, G. M., Granata, G., Galante, E., Di Silvestro, I., Salafia, L., & Geraci, C. (2007). Synthesis of water-soluble nucleotide-calixarene conjugates and preliminary investigation of their in vitro DNA replication inhibitory activity. Tetrahedron, 63(44), 10758–10763.

    CAS  Google Scholar 

  17. Consoli, G. M. L., Granata, G., Picciotto, R., Blanco, A. R., Geraci, C., Marino, A., & Nostro, A. (2018). Design, synthesis and antibacterial evaluation of a polycationic calix [4] arene derivative alone and in combination with antibiotics. MedChemComm, 9(1), 160–164.

    CAS  PubMed  Google Scholar 

  18. Lamartine, R., Tsukada, M., Wilson, D., & Shirata, A. (2002). Antimicrobial activity of calixarenes. Comptes Rendus Chimie, 5(3), 163–169.

    CAS  Google Scholar 

  19. Dings, R. P., Miller, M. C., Nesmelova, I., Astorgues-Xerri, L., Kumar, N., Serova, M., & Mayo, K. H. (2012). Antitumor agent calixarene 0118 targets human galectin-1 as an allosteric inhibitor of carbohydrate binding. Journal of Medicinal Chemistry, 55(11), 5121–5129.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Pelizzaro-Rocha, K. J., de Jesus, M. B., Ruela-de-Sousa, R. R., Nakamura, C. V., Reis, F. S., de Fatima, A., & Ferreira-Halder, C. V. (2013). Calix [6] arene bypasses human pancreatic cancer aggressiveness: Downregulation of receptor tyrosine kinases and induction of cell death by reticulum stress and autophagy. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1833(12), 2856–2865.

    CAS  Google Scholar 

  21. Santos, D., Medeiros-Silva, J., Cegonho, S., Alves, E., Ramilo-Gomes, F., Santos, A. O., & Cruz, C. (2015). Cell proliferation effects of calix [4] arene derivatives. Tetrahedron, 71(40), 7593–7599.

    CAS  Google Scholar 

  22. Dings, R. P., Levine, J. I., Brown, S. G., Astorgues-Xerri, L., MacDonald, J. R., Hoye, T. R., & Mayo, K. H. (2013). Polycationic calixarene PTX013, a potent cytotoxic agent against tumors and drug resistant cancer. Investigational New Drugs, 31(5), 1142–1150.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. An, L., Han, L. L., Zheng, Y. G., Peng, X. N., Xue, Y. S., Gu, X. K., & Yan, C. G. (2016). Synthesis, X-ray crystal structure and anti-tumor activity of calix [n] arene polyhydroxyamine derivatives. European Journal of Medicinal Chemistry, 123, 21–30.

    CAS  PubMed  Google Scholar 

  24. Gutsche, C. D., Dhawan, B., Levine, J. A., No, K. H., & Bauer, L. J. (1983). Calixarenes 9: conformational isomers of the ethers and esters of calix [4] arenes. Tetrahedron, 39(3), 409–426.

    CAS  Google Scholar 

  25. Akoz, E., Akbulut, O. Y., & Yilmaz, M. (2014). Calix [n] arene carboxylic acid derivatives as regulators of enzymatic reactions: enhanced enantioselectivity in lipase-catalyzed hydrolysis of (r/s)-naproxen methyl ester. Applied Biochemistry and Biotechnology, 172(1), 509–523.

    CAS  PubMed  Google Scholar 

  26. Ozyilmaz, E., & Sayin, S. (2013). Preparation of new calix[4]arene-immobilized biopolymers for enhancing catalytic properties of candida rugosa lipase by sol–gel encapsulation. Applied Biochemistry and Biotechnology, 170(8), 1871–1884.

    CAS  PubMed  Google Scholar 

  27. Taghvaei-Ganjali, S., Zadmard, R., & Saber-Tehrani, M. (2012). Immobilization of chlorosulfonyl-calix [4] arene onto the surface of silica gel through the directly estrification. Applied Surface Science, 258(16), 5925–5932.

    CAS  Google Scholar 

  28. Martinez-Serra, J., Gutierrez, A., Muñoz-Capó, S., Navarro-Palou, M., Ros, T., Amat, J. C., & Gines, J. (2014). xCELLigence system for real-time label-free monitoring of growth and viability of cell lines from hematological malignancies. OncoTargets and therapy, 7, 985.

    PubMed  PubMed Central  Google Scholar 

  29. Friedrich, J., Seidel, C., Ebner, R., & Kunz-Schughart, L. A. (2009). Spheroid-based drug screen: Considerations and practical approach. Nature Protocols, 4(3), 309–324.

    CAS  PubMed  Google Scholar 

  30. Bayrakci, M., & Yilmaz, B. (2018). Intermolecular interactions and binding mechanism of inclusion complexation between sulfonate calix [n] arenes and ethidium bromide. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 90(3–4), 341–349.

    CAS  Google Scholar 

  31. Percec, V., Bera, T. K., De, B. B., Sanai, Y., Smith, J., Holerca, M. N., & Fréchet, J. M. (2001). Synthesis of functional aromatic multisulfonyl chlorides and their masked precursors. The Journal of Organic Chemistry, 66(6), 2104–2117.

    CAS  PubMed  Google Scholar 

  32. Taghvaei-Ganjali, S., Rasouli-Saniabadi, M., & Mirmoeini, M. S. (2015). Application of sulfonamide derivative of calixarene for improvement of mechanical properties and thermal stability of polyurethane composite. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 83(1–2), 45–52.

    CAS  Google Scholar 

  33. Uyanik, A., Bayrakci, M., Eymur, S., & Yilmaz, M. (2014). Upper rim-functionalized calix [4] arene-based l-proline as organocatalyst for direct asymmetric aldol reactions in water and organic media. Tetrahedron, 70(49), 9307–9313.

    CAS  Google Scholar 

  34. Bayrakcı, M., Ertul, S., & Yilmaz, M. (2011). Phase solubility studies of poorly soluble drug molecules by using O-phosphorylated calixarenes as drug-solubilizing agents. Journal of Chemical & Engineering Data, 57(1), 233–239.

    Google Scholar 

  35. Abdul Qadir, M., Ahmed, M., & Iqbal, M. (2015). Synthesis, characterization, and antibacterial activities of novel sulfonamides derived through condensation of amino group containing drugs, amino acids, and their analogs. BioMed research international, 2015.

  36. Bopp, S. K., & Lettieri, T. (2008). Comparison of four different colorimetric and fluorometric cytotoxicity assays in a zebrafish liver cell line. BMC Pharmacology, 8(1), 8.

    PubMed  PubMed Central  Google Scholar 

  37. Cherenok, S., Vovk, A., Muravyova, I., Shivanyuk, A., Kukhar, V., Lipkowski, J., & Kalchenko, V. (2006). Calix [4] arene α-aminophosphonic acids: asymmetric synthesis and enantioselective inhibition of an alkaline phosphatase. Organic Letters, 8(4), 549–552.

    CAS  PubMed  Google Scholar 

  38. Cherenok, S. O., Yushchenko, O. A., Tanchuk, V. Y., Mischenko, I. M., Samus, N. V., (2012). Calix [4] arene-α-hydroxyphosphonic acids. Synthesis, stereochemistry, and inhibition of glutathione S-transferase. Arkivoc, 4, 278–298.

    Google Scholar 

  39. Zhou, H., Wang, D. A., Baldini, L., Ennis, E., Jain, R., Carie, A., & Hamilton, A. D. (2006). Structure–activity studies on a library of potent calix [4] arene-based PDGF antagonists that inhibit PDGF-stimulated PDGFR tyrosine phosphorylation. Organic & Biomolecular Chemistry, 4(12), 2376–2386.

    CAS  Google Scholar 

  40. Dings, R. P., Chen, X., Hellebrekers, D. M., van Eijk, L. I., Zhang, Y., Hoye, T. R., & Mayo, K. H. (2006). Design of nonpeptidic topomimetics of antiangiogenic proteins with antitumor activities. Journal of the National Cancer Institute, 98(13), 932–936.

    CAS  PubMed  Google Scholar 

  41. Kamada, R., Yoshino, W., Nomura, T., Chuman, Y., Imagawa, T., Suzuki, T., & Sakaguchi, K. (2010). Enhancement of transcriptional activity of mutant p53 tumor suppressor protein through stabilization of tetramer formation by calix [6] arene derivatives. Bioorganic & Medicinal Chemistry Letters, 20(15), 4412–4415.

    CAS  Google Scholar 

  42. Mishani, E., Abourbeh, G., Rozen, Y., Jacobson, O., Laky, D., David, I. B., & Shaul, M. (2004). Novel carbon-11 labeled 4-dimethylamino-but-2-enoic acid [4-(phenylamino)-quinazoline-6-yl]-amides: potential PET bioprobes for molecular imaging of EGFR-positive tumors. Nuclear Medicine and Biology, 31(4), 469–476.

    CAS  PubMed  Google Scholar 

  43. Jarkas, N., Votaw, J. R., Voll, R. J., Williams, L., Camp, V. M., Owens, M. J., & Goodman, M. M. (2005). Carbon-11 HOMADAM: a novel PET radiotracer for imaging serotonin transporters. Nuclear Medicine and Biology, 32(3), 211–224.

    CAS  PubMed  Google Scholar 

  44. Jacobson, O., Laky, D., Carlson, K. E., Elgavish, S., Gozin, M., Even-Sapir, E., & Mishani, E. (2006). Chiral dimethylamine flutamide derivatives—modeling, synthesis, androgen receptor affinities and carbon-11 labeling. Nuclear Medicine and Biology, 33(6), 695–704.

    CAS  PubMed  Google Scholar 

  45. Jacobson, O., & Mishani, E. (2008). [11C]-dimethylamine as a labeling agent for PET biomarkers. Applied Radiation and Isotopes, 66(2), 188–193.

    CAS  PubMed  Google Scholar 

  46. Shen, R., Wang, W., & Yang, G. (2014). DNA binding property and antitumor evaluation of xanthone with dimethylamine side chain. Journal of Fluorescence, 24(3), 959–966.

    CAS  PubMed  Google Scholar 

Download references

Funding

This study is part of PhD Thesis of Bahar Yilmaz and authors received financial support from the Scientific and Technological Research Council of Turkey (TUBITAK grant no: 116Z979).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mevlut Bayrakci.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yilmaz, B., Bayrac, A.T. & Bayrakci, M. Evaluation of Anticancer Activities of Novel Facile Synthesized Calix[n]arene Sulfonamide Analogs. Appl Biochem Biotechnol 190, 1484–1497 (2020). https://doi.org/10.1007/s12010-019-03184-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03184-x

Keywords

Navigation