Skip to main content
Log in

The Protective Effects of Silymarin on Thioacetamide-Induced Liver Damage: Measurement of miR-122, miR-192, and miR-194 Levels

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study aims to investigate the protective effects of silymarin (Sm) in thioacetamide (TAA)-related liver damage. What makes this study special is that it attempts to determine the expression of changes in the liver at the level of gene expression. Routine liver damage markers were compared with changes in the levels of microRNA (miRNA) known as new biomarkers. With this in mind, we divided the rats into four groups including control, TAA, Sm + TAA (50 + 50 mg/kg), and Sm + TAA (100 + 50 mg/kg). Blood and tissue samples belonging to the rats were collected in consideration of morphological, immunohistochemistry, miRNAs levels, and biochemical evaluations. Our study results showed that miR-122, miR-192, and miR-194 levels had decreased in the experimental groups given TAA, whereas miR-122, miR-192, and miR-194 levels had increased in the doses of Sm + TAA-given group. Therefore, Sm treatment undertaken before exposure to the toxin successfully altered its effects upon the study animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig 2.
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mangipudy, R. S., Chanda, S., & Mehendale, H. M. (1995). Tissue repair response as a function of dose in thioacetamide hepatotoxicity. Environmental Health Perspectives, 103(3), 260–267. https://doi.org/10.1289/ehp.95103260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nozu, F., Takeyama, N., & Tanaka, T. (1992). Changes of hepatic fatty acid metabolism produced by chronic thioacetamide administration in rats.J. Hepatol., 15, 1099–1106. https://doi.org/10.1002/hep.1840150621.

    Article  CAS  Google Scholar 

  3. Ledda-Columbano, G. M., Coni, P., Curto, M., Giacomini, L., Faa, G., Oliverio, S., Piacentini, M., & Columbano, A. (1991). Induction of two different modes of cell death, apoptosis and necrosis, in rat liver after a single dose of thioacetamide. The American Journal of Pathology, 39, 1099–1109.

    Google Scholar 

  4. Siemionow, K., Teul, J., Drągowski, P., Pałka, J., & Miltyk, W. (2016). New potential biomarkers of acetaminophen-induced hepatotoxicity. Advances in Medical Sciences, 61(2), 325–330.

    Article  Google Scholar 

  5. Hunter, A. L., Holscher, M. A., & Neal, R. A. (1977). Thioacetamide induced hepatic necrosis. I. Involvement of the mixed-function oxidase enzyme system. J. Pharmacol. Exp. Ther, 200(2), 439–448.

    CAS  PubMed  Google Scholar 

  6. Wang, K., Zhang, S., Marzolf, B., Troisch, P., Brightman, A., Hu, Z., Hood, L.E., Galas, D.J. (2009). Circulating microRNAs, potential biomarkers for drug-induced liver injury.ProcNatl Acad. Sci. 106.

  7. Ramaiah, S. K., Apte, U., & Mehendale, H. M. (2001). Cytochrome P4502E1 induction increases thioacetamide liver injury in diet restricted rats. DrugMetabDispos., 29, 1088–1095.

    CAS  Google Scholar 

  8. Chilakapati, J., Korrapati, M.C., Shankar, K., Hill, R.A., Warbritton, A., Latendresse, J. R., Mehendale, H.M. (2007). Role of CYP2E1 and saturation kinetics in the bioactivation of thioacetamide: effects of diet restriction and phenobarbital. Toxicol.Appl. Pharmacol., 15;219(1):72-84.

  9. Van Beijnum, J. R., Giovannetti, E., Poel, D., Nowak-Sliwinska, P., & Griffioen, A. W. (2017). miRNAs: micro-managers of anticancer combination therapies. Angiogenesis., 20, 269–285.

    Article  Google Scholar 

  10. Chang, J., Nicolas, E., Marks, D., Sander, C., Lerro, A., Buendia, M. A., Xu, C., Mason, W. S., Moloshok, T., Bort, R., Zaret, K. S., & Taylor, J. M. (2004). miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biology, 1(2), 106–113.

    Article  CAS  Google Scholar 

  11. Coulouarn, C., Factor, V. M., Andersen, J. B., Durkin, M. E., & Thorgeirsson, S. S. (2009). Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene., 28(40), 3526–3536.

    Article  CAS  Google Scholar 

  12. Szabo, G., & Bala, S. (2013). MicroRNAs in liver disease. Nature Reviews. Gastroenterology & Hepatology, 10(9), 542–552.

    Article  CAS  Google Scholar 

  13. Krauskopf, J., Caiment, F., Claessen, S. M., Johnson, K. J., Warner, R. L., Schomaker, S. J., Burt, D. A., Aubrecht, J., & Kleinjans, J. C. (2015). Application of high-throughput sequencing to circulating microRNAs reveals novel biomarkers for drug-induced liver injury. Toxicol.Sci., 143(2), 268–276.

    Article  CAS  Google Scholar 

  14. Starkey, L. P. J., Dear, J., Platt, V., Simpson, K. J., Craig, D. G., Antoine, D. J., French, N. S., Dhaun, N., Webb, D. J., Costello, E. M., Neoptolemos, J. P., Moggs, J., Goldring, C. E., & Park, B. K. (2011). Circulating microRNAs as potential markers of human drug-induced liver injury. Journal of Hepatology, 54, 1767–1776.

    Article  Google Scholar 

  15. Laterza, O. F., Scott, M. G., Garrett-Engele, P. W., Korenblat, K. M., & Lockwood, C. M. (2013). Circulating miR-122 as a potential biomarker of liver disease. Biomarkers in Medicine, 7(2), 205–210.

    Article  CAS  Google Scholar 

  16. Van der Meer, A. J., Farid, W. R., Sonneveld, M. J., de Ruiter, P. E., Boonstra, A., van Vuuren, A. J., Verheij, J., Hansen, B. E., de Knegt, R. J., van der Laan, L. J., & Janssen, H. L. (2013). Sensitive detection of hepatocellular injury in chronic hepatitis C patients with circulating hepatocyte-derived microRNA-122. Journal of Viral Hepatitis, 20(3), 158–166.

    Article  Google Scholar 

  17. Hu, J., Wang, Z., Tan, C. J., Liao, B. Y., Zhang, X., Xu, M., Dai, Z., Qiu, S. J., Huang, X. W., Sun, J., Sun, Q. M., He, Y. F., Song, K., Pan, Q., Wu, Y., Fan, J., & Zhou, J. (2013). Plasma microRNA, a potential biomarker for acute rejection after liver transplantation. Transplantation., 95(8), 991–999.

    Article  CAS  Google Scholar 

  18. Silakit, R., Loilome, W., Yongvanit, P., Chusorn, P., Techasen, A., Boonmars, T., Khuntikeo, N., Chamadol, N., Pairojkul, C. And Namwat, N. (2014). Circulating miR-192 in liver fluke-associated cholangiocarcinoma patients: a prospective prognostic indicator. Journal of Hepato-Biliary-Pancreatic Sciences 21, 864–872, 12.

    Article  Google Scholar 

  19. Meng, Z., Fu, X., Chen, X., Zeng, S., Tian, Y., Jove, R., Xu, R., & Huang, W. (2010). miR-194 is a marker of hepatic epithelial cells and suppresses metastasis of liver cancer cells in mice. Hepatology, 52(6), 2148–2157.

    Article  CAS  Google Scholar 

  20. Bruck, R., Aeed, H., Shirin, H., Matas, Z., Zaidel, L., Avni, Y., & Halpern, Z. (1999). The hydroxyl radical scavengers dimethyl sulfoxide and dimethyl thio urea protect rats against thioacetamide-induced fulminant hepatic failure. Journal of Hepatology, 31, 27–38.

    Article  CAS  Google Scholar 

  21. Zahir, A., Haider, B., Abbasi, B. H., Adil, M., Anjum, S., Zia, M., & Ul-haq, I. (2014). Synergistic effects of drought stress and photoperiods on phenology and secondary metabolism of Silybum marianum. Applied Biochemistry and Biotechnology, 174, 693–707.

    Article  CAS  Google Scholar 

  22. Natarajan, S. K., Thomas, S., Ramamoorthy, S., Basivireddy, J., Pulimood, A. B., Ramachandran, A., & Balasubramanian, K. A. (2006). Oxidative stress in the development of liver cirrhosis: a comparison of two different experimental models. Journal of Gastroenterology and Hepatology, 21, 947–957.

    Article  Google Scholar 

  23. Duan, L., Carrier, D. J., & Clausen, E. C. (2004). Silymarin extraction from milk thistle using hot water. Applied Biochemistry and Biotechnology, 113-116, 559–568.

    Article  CAS  Google Scholar 

  24. Sathyasaikumar, K. V., Swapna, I., Reddy, P. V., Murthy, C. R., Roy, K. R., Dutta Gupta, A., Senthilkumaran, B., & Redanna, P. (2007). Co-administration of C-phycocyanin ameliorates thioacetamide-induced hepatic encephalopathy in Wistar rats. Journal of the Neurological Sciences, 252(1), 67–75.

    Article  CAS  Google Scholar 

  25. Anbarasu, C., Rajkapoor, B., & Bhat, K. S. (2012). John Giridharan, A Arul Amuthan, Satish K Protective effect of Pisonia aculeata on thioacetamide induced hepatotoxicity in rats. Asian Pacific Journal of Tropical Biomedicine, 2(7), 511–515.

    Article  CAS  Google Scholar 

  26. Nada, S. A., Gowifel, A. M. H., El-Denshary, E. E.-D. S., Salama, A. A., Khalil, M. G., & Ahmed, K. A. (2015). Protective effect of grape seed extract and/or silymarin against thioacetamide-induced hepatic fibrosis in rats. J Liver, 4, 2.

    Article  Google Scholar 

  27. Esterbauer, H., & Cheeseman, K. H. (1990). Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods in Enzymology, 186, 407–421.

    Article  CAS  Google Scholar 

  28. Esterbauer, H., Schaur, R.J., Zollner, H. (1991). Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes, free radical biology and medicine. 11, 1, 81–128.

  29. Giera, M., Lingeman, H., & Niessen, W. M. A. (2012). Recent advancements in the LC- and GC-based analysis of malondialdehyde (MDA): a brief overview. Chromatographia., 75(9-10), 433–440.

    Article  CAS  Google Scholar 

  30. David, C., Raziella, R. G., Silvia, B., et al. (2011). Role of quercetin in preventing thioacetamide-induced liver injury in rats. Toxicologic Pathology, 39(6), 949–957.

    Article  Google Scholar 

  31. Nafees, S., Ahmad, S.T., Arjumand, W., Rashid, S., Ali, N., Sultana, S. (2013). Carvacrol ameliorates thioacetamide-induced hepatotoxicity by abrogation of oxidative stress, inflammation, and apoptosis in liver of Wistar rats. Human and Experimental Toxicology 1–13.

  32. Lim, S., Lee, S. J., Nam, K. W., Kim, K. H., & Mar, W. (2013). Hepatoprotective effects of reynosin against thioacetamide induced apoptosis in primary hepatocytes and mouse liver. Archives of Pharmacal Research, 36, 485–494.

    Article  CAS  Google Scholar 

  33. Antoine, D. J., Dear, J. W., Lewis, P. S., Platt, V., Coyle, J., Masson, M., Thanacoody, R. H., Gray, A. J., Webb, D. J., Moggs, J. G., Bateman, D. N., Goldring, C. E., & Park, B. K. (2013). Mechanistic biomarkers provide early and sensitive detection of acetaminophen-induced acute liver injury at first presentation to hospital. Journal of Hepatology, 58, 777–787.

    Article  CAS  Google Scholar 

  34. Nitatori, T., Sato, N., Waguri, S., Karasawa, Y., Araki, H., Shinabai, K., et al. (1994). Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis. The Journal of Neuroscience, 15(2), 1001–1011.

    Article  Google Scholar 

  35. Nitatori, T., Sato, N., Waguri, S., Karasawa, Y., Araki, H., Shinabai, K., Kominani, E., & Uchiyama, Y. (1994). Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis. The Journal of Neuroscience, 15, 1001–1011.

    Article  Google Scholar 

  36. Hashimoto, K., Minaga, W., & Yanagi, Y. (2003). Caspase-dependent apoptosis in fulminant hepatic failure induced by herpes simplex virus in mice. Journal of Hepatology, 39, 773–778.

    Article  CAS  Google Scholar 

  37. Madani, H., Talebolhosseini, M., Asgary, S., & Naderi, G. H. (2008). Hepatoprotective activity of Silybum marianum and Cichorium intybus against thioacetamide in Rat. Pakistan Journal of Nutrition, 7, 172–176.

    Article  CAS  Google Scholar 

  38. Patel, N., Joseph, C., Corcoran, G. B., & Ray, S. D. (2000). Silymarin modulates doxorubicin induced oxidative stress, Bcl-xL and p53 expression while preventing apoptotic and necrotic cell death in the liver. Toxicology and Applied Pharmacology, 245, 143–152.

    Article  Google Scholar 

  39. Santosh, K., Anshu, R., & Manjeshwar, B. (2005). Silymarin induces apoptosis primarily through a p53-dependent pathway involving Bcl-2/Bax, cytochrome c release, and caspase activation. Molecular Cancer Therapeutics, 4, 207–216.

    Google Scholar 

Download references

Funding

Project with coded 2017-1621 was supported by the scientific research projects of Eskisehir Osmangazi University. This study was made from PhD thesis by Ozgun Teksoy at Eskisehir Osmangazi University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Cengiz.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teksoy, O., Sahinturk, V., Cengiz, M. et al. The Protective Effects of Silymarin on Thioacetamide-Induced Liver Damage: Measurement of miR-122, miR-192, and miR-194 Levels. Appl Biochem Biotechnol 191, 528–539 (2020). https://doi.org/10.1007/s12010-019-03177-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03177-w

Keywords

Navigation