Skip to main content
Log in

Enhancing Catalytic Efficiency of an Actinoplanes utahensis Echinocandin B Deacylase through Random Mutagenesis and Site-Directed Mutagenesis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Echinocandin B deacylase (EBDA), from Actinoplanes utahensis ZJB-08196, is capable of cleaving the linoleoyl group from echinocandin B (ECB), forming the echinocandin B nucleus (ECBN), which is a key precursor of semisynthetic antifungal antibiotics. In the present study, molecular evolution of AuEBDA by random mutagenesis combined with site-directed mutagenesis (SDM) and screening was performed. Random mutagenesis on the wild-type (WT) AuEBDA generated two beneficial substitutions of G287Q, R527V. The “best” variant AuEBDA-G287Q/R527V was obtained by combining G287Q with R527V through SDM, which was most active at 35 °C, pH 7.5, with Km and vmax values of 0.68 mM and 395.26 U/mg, respectively. Mutation of G287Q/R527V markedly increased the catalytic efficiency kcat/Km by 290% compared with the WT-AuEBDA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Takeshima, H., Inokoshi, J., Takada, Y., Tanaka, H., & Ōmura, S. (1989). A deacylation enzyme for aculeacin A, a neutral lipopeptide antibiotic, from Actinoplanes utahensis: Purification and characterization. Journal of Biochemistry, 105(4), 606–610.

    Article  CAS  PubMed  Google Scholar 

  2. Kreuzman, A. J., Hodges, R. L., Swartling, J. R., Pohl, T. E., Ghag, S. K., Baker, P. J., McGilvray, D., & Yeh, W. K. (2000). Membrane-associated echinocandin B deacylase of Actinoplanes utahensis: purification, characterization, heterologous cloning and enzymatic deacylation reaction. Journal of Industrial Microbiology and Biotechnology, 24(3), 173–180.

    Article  CAS  Google Scholar 

  3. Inokoshi, J., Takeshima, H., Ikeda, H., & Ōmura, S. (1993). Efficient production of aculeacin A acylase in recombinant Streptomyces strains. Applied Microbiology and Biotechnology, 39(4-5), 532–536.

    Article  CAS  Google Scholar 

  4. Kim, Y., Kim, S., Earnest, T. N., & Hol, W. G. J. (2002). Precursor structure of cephalosporin acylase Insights into autoproteolytic activation in a new Nterminal hydrolase family. Journal of Biological Chemistry, 277(4), 2823–2829.

    Article  CAS  PubMed  Google Scholar 

  5. Shao, L., Li, J., Liu, A. J., Chang, Q., Lin, H. M., & Chen, D. J. (2013). Efficient bioconversion of echinocandin B to its nucleus by overexpression of deacylase genes in different host strains. Applied and Environmental Microbiology, 79(4), 1126–1133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhao, L. N., Wang, Q. L., Bie, Y., & Lu, X. X. (2017). Isolation, identification and characterization of potential impurities of anidulafungin. Journal of Pharmaceutical and Biomedical Analysis, 141, 192–199.

    Article  CAS  PubMed  Google Scholar 

  7. Boeck, L. D., Fukuda, D. S., Abbott, B. J., & Debono, M. (1988). Deacylation of A21978C, an acidic lipopeptide antibiotic complex, by Actinoplanes utahensis. The Journal of Antibiotics, 41(8), 1085–1092.

    Article  CAS  PubMed  Google Scholar 

  8. Boeck, L. D., Fukuda, D. S., Abbott, B. J., & Debono, M. (1989). Deacylation of echinocandin B by Actinoplanes utahensis. The Journal of Antibiotics, 42(3), 382–388.

  9. Yang, H., Swartz, A. M., Park, H. J., Srivastava, P., Ellis-Guardiola, K., Upp, D. M., Lee, G., Belsare, K., Gu, Y. F., Zhang, C., Moellering, R. E., & Lewis, J. C. (2018). Evolving artificial metalloenzymes via random mutagenesis. Nature Chemistry, 10(3), 318–324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Matsuura, T., Miyai, K., Trakulnaleamsai, S., Yomo, T., Shima, Y., Miki, S., Yamamoto, K., & Urabe, I. (1999). Evolutionary molecular engineering by random elongation mutagenesis. Nature Biotechnology, 17, 58–61.

    Article  CAS  PubMed  Google Scholar 

  11. Shigehisa, M., Amaba, N., Arai, S., Higashi, C., Kawanabe, R., Matsunaga, A., Laksmi, F. A., Tokunaga, M., & Ishibashi, M. (2017). Stabilization of luciferase from Renilla reniformis using random mutations. Protein Engineering Design and Selection, 30(1), 7–13.

    CAS  Google Scholar 

  12. Kobayashi, R., Hirano, N., Kanaya, S., & Haruki, M. (2012). Enhancement of the enzymatic activity of Escherichia coli acetyl esterase by a double mutation obtained by random mutagenesis. Bioscience Biotechnology and Biochemistry, 76(11), 2082–2088.

    Article  CAS  PubMed  Google Scholar 

  13. Zhao, M., Wang, S. L., Tao, X. Y., Zhao, G. L., Ren, Y. H., Wang, F. Q., & Wei, D. Z. (2019). Engineering diverse eubacteria promoters for robust gene expression in Streptomyces lividans. Journal of Biotechnology, 289, 93–102.

    Article  CAS  PubMed  Google Scholar 

  14. Kim, M. S., & Lei, X. G. (2008). Enhancing thermostability of Escherichia coli phytase AppA2 by error-prone PCR. Applied Microbiology and Biotechnology, 79(1), 69–75.

    Article  CAS  PubMed  Google Scholar 

  15. Wang, Y. J., Liu, L. L., Wang, Y. S., Xue, Y. P., Zheng, Y. G., & Shen, Y. C. (2012). Actinoplanes utahensis ZJB-08196 fed-batch fermentation at elevated osmolality for enhancing acarbose production. Bioresource Technology, 103(1), 337–342.

    Article  CAS  PubMed  Google Scholar 

  16. Wang, Y. J., Zheng, Y. G., Xue, Y. P., Wang, Y. S., & Shen, Y. C. (2011). Analysis and determination of anti-diabetes drug acarbose and its structural analogs. Current Pharmaceutical Analysis, 7(1), 12–20.

    Article  Google Scholar 

  17. Peimbert, M., & Segovia, L. (2003). Evolutionary engineering of a β-lactamase activity on a D-Ala D-Ala transpeptidase fold. Protein Engineering, 16(1), 27–35.

    Article  CAS  PubMed  Google Scholar 

  18. Chica, R. A., Doucet, N., & Pelletier, J. N. (2005). Semi-rational approaches to engineering enzyme activity: combining the benefits of directed evolution and rational design. Current Opinion in Biotechnology, 16(4), 378–384.

    Article  CAS  PubMed  Google Scholar 

  19. Ishibashi, M., Tatsuda, S., Izutsu, K. I., Kumeda, K., Arakawa, T., & Tokunaga, M. (2007). A single Gly114Arg mutation stabilizes the hexameric subunit assembly and changes the substrate specificity of halo-archaeal nucleoside diphosphate kinase. FEBS Letters, 581(21), 4073–4079.

    Article  CAS  PubMed  Google Scholar 

  20. Tsukada, S. I., Anzai, Y., Li, S., Kinoshita, K., Sherman, D. H., & Kato, F. (2010). Gene targeting for O-methyltransferase genes, mycE and mycF, on the chromosome of Micromonospora griseorubida producing mycinamicin with a disruption cassette containing the bacteriophage φC31 attB attachment site. FEMS Microbiology Letters, 304(2), 148–156.

    Article  CAS  PubMed  Google Scholar 

  21. Luo, Y., Wang, Y. S., Liu, J., Lan, H., Shao, M. H., Yu, Y., Quan, F. S., & Zhang, Y. (2015). Production of transgenic cattle highly expressing human serum albumin in milk by phiC31 integrase-mediated gene delivery. Transgenic Research, 24(5), 875–883.

    Article  CAS  PubMed  Google Scholar 

  22. Distler, J., Mansouri, K., & Piepersberg, W. (1985). Streptomycin biosynthesis in Streptomyces griseus II. Adjacent genomic location of biosynthetic genes and one of two streptomycin resistance genes. FEMS Microbiology Letters, 30(1–2), 151–154.

    Article  CAS  Google Scholar 

  23. Xie, X. X., Shen, Q. C., Cao, L. S., Chen, Y. Y., Ma, L. Y., Xiao, Q. F., Yu, C. N., & Fu, Z. Z. (2019). Depression caused by long-term stress regulates premature aging and is possibly associated with disruption of circadian rhythms in mice. Physiology and Behavior, 199, 100–110.

    Article  CAS  PubMed  Google Scholar 

  24. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCTmethod. Methods, 25(4), 402–408.

    Article  CAS  PubMed  Google Scholar 

  25. Inokoshi, J., Takeshima, H., Ikeda, H., & Ōmura, S. (1992). Cloning and sequencing of the aculeacin A acylase-encoding gene from Actinoplanes utahensis and expression in Streptomyces lividans. Gene, 119(1), 29–35.

    Article  CAS  PubMed  Google Scholar 

  26. Yasutake, Y., Kusada, H., Ebuchi, T., Hanada, S., Kamagata, Y., Tamura, T., & Kimura, N. (2017). Bifunctional quorum-quenching and antibiotic-acylase MacQ forms a 170-kDa capsule-shaped molecule containing spacer polypeptides. Scientific Reports, 7(1), 8946.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Wang, Y. J., Ying, B. B., Shen, W., Zheng, R. C., & Zheng, Y. G. (2017). Rational design of Kluyveromyces marxianus ZJB14056 aldo–keto reductase KmAKR to enhance diastereoselectivity and activity. Enzyme and Microbial Technology, 107, 32–40.

    Article  CAS  PubMed  Google Scholar 

  28. Švedas, V. K., Margolin, A. L., & Berezin, I. V. (1980). Enzymatic synthesis of β-lactam antibiotics: A thermodynamic background. Enzyme and Microbial Technology, 2(2), 138–144.

    Article  Google Scholar 

  29. Balasingham, K., Warburton, D., Dunnill, P., & Lilly, M. D. (1972). The isolation and kinetics of penicillin amidase from Escherichia coli. Biochimica et Biophysica Acta (BBA) – Enzymology, 276(1), 250–256.

    Article  CAS  Google Scholar 

  30. Mahajan, P. B. (1984). Penicillin acylases. Applied Biochemistry and Biotechnology, 9(5), 537–554.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by National Natural Science Foundation of China (21878274).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Jun Wang.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, YN., Qiu, S., Cheng, F. et al. Enhancing Catalytic Efficiency of an Actinoplanes utahensis Echinocandin B Deacylase through Random Mutagenesis and Site-Directed Mutagenesis. Appl Biochem Biotechnol 190, 1257–1270 (2020). https://doi.org/10.1007/s12010-019-03170-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03170-3

Keywords

Navigation