Skip to main content
Log in

Development of a Reversible Indicator Displacement Assay Based on the 1-(2-Pyridylazo)-2-naphthol for Colorimetric Determination of Cysteine in Biological Samples and Its Application to Constructing the Paper Test Strips and a Molecular-Scale Set/Reset Memorized Device

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A new colorimetric chemosensor for naked-eye detection and determination of cysteine (Cys) based on indicator displacement assay (IDA) was designed using 1-(2-pyridylazo)-2-naphthol (PAN). The indicator exchange occurred between PAN and Cys by the addition of Cys to the Cu(PAN)2 complex, which is accomplished by an immediate visible color change from magenta to yellow, in the solution phase and paper-based test strips. The proposed method exhibits 0.35 μmol L−1 detection limit and good linearity in the range of 2.25–42.91 μmol L−1. Paper test strips presented a detection limit of 38.0 μmol L−1, fabricating an easy to use test kit for compatible “in-the-field” detection of Cys. The computer image analysis of the paper test strips, obtained from the CMYK color analysis system, showed a linear increase in Y (yellow) intensity with enhancement in the Cys concentration of 50.0–550.0 μmol L−1. Additionally, the absorption and color change obtained in this chemosensor operate as an “INHIBIT” logic gate considering Cu2+ and Cys as inputs. Eventually, based on such a fast, reversible, and reproducible signal, a molecular-scale sequential memory unit was designed displaying “Writing–Reading–Erasing–Reading” and “Multi-Write” behavior. The developed chemosensor presented a satisfactory repeatability, intermediate precision, and successful application for the selective determination of Cys in human biological fluids.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. van de Rest, O., van der Zwaluw, N. L., & de Groot, L. C. (2013). Literature review on the role of dietary protein and amino acids in cognitive functioning and cognitive decline. Amino Acids, 45(5), 1035–1045.

    PubMed  Google Scholar 

  2. Wahl, O., & Holzgrabe, U. (2016). Amino acid analysis for pharmacopoeial purposes. Talanta, 154, 150–163.

    CAS  PubMed  Google Scholar 

  3. Hashemi, H. S., Nezamzadeh-Ejhieh, A., & Karimi-Shamsabadi, M. (2016). A novel cysteine sensor based on modification of carbon paste electrode by Fe(II)-exchanged zeolite X nanoparticles. Materials Science & Engineering. C, Materials for Biological Applications, 58, 286–293.

    CAS  Google Scholar 

  4. Wei, X., Qi, L., Tan, J., Liu, R., & Wang, F. (2010). A colorimetric sensor for determination of cysteine by carboxymethyl cellulose-functionalized gold nanoparticles. Analytica Chimica Acta, 671(1-2), 80–84.

    CAS  PubMed  Google Scholar 

  5. Borase, H. P., Patil, C. D., Salunkhe, R. B., Suryawanshi, R. K., Kim, B. S., Bapat, V. A., & Patil, S. V. (2015). Bio-functionalized silver nanoparticles: a novel colorimetric probe for cysteine detection. Applied Biochemistry and Biotechnology, 175(7), 3479–3493.

    CAS  PubMed  Google Scholar 

  6. Amarnath, K., Amarnath, V., Amarnath, K., Valentine, H. L., & Valentine, W. M. (2003). A specific HPLC-UV method for the determination of cysteine and related aminothiols in biological samples. Talanta, 60(6), 1229–1238.

    CAS  PubMed  Google Scholar 

  7. Inoue, T., & Kirchhoff, J. R. (2002). Determination of thiols by capillary electrophoresis with amperometric detection at a coenzyme pyrroloquinoline quinone modified electrode. Analytical Chemistry, 74(6), 1349–1354.

    CAS  PubMed  Google Scholar 

  8. Tavallali, H., & Massoumi, A. (1998). Simultaneous kinetic spectrophotometric determination of vanadium(V) and iron(III). Talanta, 47(2), 479–485.

    CAS  PubMed  Google Scholar 

  9. Türkekul, K., Üzer, A., Can, Z., Erçağ, E., & Apak, R. (2019). Colorimetric sensing of the insensitive energetic material 3-nitro-1,2,4-triazol-5-one (NTO) using l-cysteine stabilized gold nanoparticles and copper(II). Analytical Letters, 1-13.

  10. Xiao, W., Hu, H., & Huang, J. (2012). Colorimetric detection of cysteine by surface functionalization of natural cellulose substance. Sensors and Actuators B: Chemical, 171-172, 878–885.

    CAS  Google Scholar 

  11. Duan, L., Xu, Y., Qian, X., Wang, F., Liu, J., & Cheng, T. (2008). Highly selective fluorescent chemosensor with red shift for cysteine in buffer solution and its bioimage: symmetrical naphthalimide aldehyde. Tetrahedron Letters, 49(47), 6624–6627.

    CAS  Google Scholar 

  12. Lee, S. A., Lee, J. J., Shin, J. W., Min, K. S., & Kim, C. (2015). A colorimetric chemosensor for the sequential detection of copper(II) and cysteine. Dyes and Pigments, 116, 131–138.

    CAS  Google Scholar 

  13. Tavallali, H., Deilamy-Rad, G., Parhami, A., & Mousavi, S. Z. (2013). A novel development of dithizone as a dual-analyte colorimetric chemosensor: detection and determination of cyanide and cobalt (II) ions in dimethyl sulfoxide/water media with biological applications. Journal of Photochemistry and Photobiology. B, 125, 121–130.

    CAS  Google Scholar 

  14. Tavallali, H., Baezzat, M.-R., Deilamy-Rad, G., Parhami, A., & Hasanli, N. (2015). An ultrasensitive and highly selective fluorescent and colorimetric chemosensor for citrate ions based on rhodamine B and its application as the first molecular security keypad lock based on phosphomolybdic acid and citrate inputs. Journal of Luminescence, 160, 328–336.

    CAS  Google Scholar 

  15. de Silva, P. A., Gunaratne, N. H. Q., & McCoy, C. P. (1993). A molecular photoionic AND gate based on fluorescent signalling. Nature., 364(6432), 42–44.

    Google Scholar 

  16. Tang, L., Wu, D., Wen, X., Dai, X., & Zhong, K. (2014). A novel carbazole-based ratiometric fluorescent sensor for Zn2+ recognition through excimer formation and application of the resultant complex for colorimetric recognition of oxalate through IDAs. Tetrahedron, 70(47), 9118–9124.

    CAS  Google Scholar 

  17. Xu, X., Zhang, N., Brown, G. M., Thundat, T. G., & Ji, H.-F. (2017). Ultrasensitive detection of Cu2+ using a microcantilever sensor modified with L-cysteine self-assembled monolayer. Applied Biochemistry and Biotechnology, 183(2), 555–565.

    CAS  PubMed  Google Scholar 

  18. Zhang, D. (2009). Highly selective colorimetric detection of cysteine and homocysteine in water through a direct displacement approach. Inorganic Chemistry Communications, 12(12), 1255–1258.

    CAS  Google Scholar 

  19. Arvand, M., Abolghasemi, S., & Zanjanchi, M. A. (2007). Simultaneous determination of zinc and copper(II) with 1-(2-pyridylazo)2-naphthol in micellar media by spectrophotometric H-point standard addition method. Journal of Analytical Chemistry, 62(4), 342–347.

    CAS  Google Scholar 

  20. Cheng, K. L. (1958). Complexometric titration of copper and other metals in mixture. 1-(2-Pyridylazo)-2-naphthol (dye) as indicator. Analytical Chemistry, 30(2), 243–245.

    CAS  Google Scholar 

  21. Zhang, D., & Jin, W. (2012). Highly selective and sensitive colorimetric probe for hydrogen sulfide by a copper (II) complex of azo-dye based on chemosensing ensemble approach. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy., 90, 35–39.

    CAS  Google Scholar 

  22. Shah, P., Zhu, X., & Li, C.-Z. (2013). Development of paper-based analytical kit for point-of-care testing. Expert Review of Molecular Diagnostics, 13(1), 83–91.

    CAS  PubMed  Google Scholar 

  23. Martinez, A. W., Phillips, S. T., Whitesides, G. M., & Carrilho, E. (2010). Diagnostics for the developing world: microfluidic paper-based analytical devices. Analytical Chemistry, 82(1), 3–10.

    CAS  PubMed  Google Scholar 

  24. Gelsema, W. J., de Ligny, C. L., Remijnse, A. G., & Blijleven, H. A. (1966). pH-Measurements in alcohol-water mixtures, using aqueous standard buffer solutions for calibration. Recueil des Travaux Chimiques des Pays-Bas, 85(7), 647–660.

    CAS  Google Scholar 

  25. Gelsema, W. J., de Ligny, C. L., & Blijleven, H. A. (1967). pH-measurements in alcohol-water mixtures. On the use of aqueous standard buffer solutions for calibration. Recueil des Travaux Chimiques des Pays-Bas, 86(8), 852–864.

    CAS  Google Scholar 

  26. Katrusiak, A. E., Paterson, P. G., Kamencic, H., Shoker, A., & Lyon, A. W. (2001). Pre-column derivatization high-performance liquid chromatographic method for determination of cysteine, cysteinyl–glycine, homocysteine and glutathione in plasma and cell extracts. Journal of Chromatography. B, Biomedical Sciences and Applications, 758(2), 207–212.

    CAS  PubMed  Google Scholar 

  27. Chen, W., Zhao, Y., Seefeldt, T., & Guan, X. (2008). Determination of thiols and disulfides via HPLC quantification of 5-thio-2-nitrobenzoic acid. Journal of Pharmaceutical and Biomedical Analysis, 48(5), 1375–1380.

    PubMed  PubMed Central  Google Scholar 

  28. Berthon, G. (1995). Critical evaluation of the stability constants of metal complexes of amino acids with polar side chains (technical report). Pure and Applied Chemistry, pp. 1117.

  29. Remelli, M., Peana, M., Medici, S., Delogu, L. G., & Zoroddu, M. A. (2013). Interaction of divalent cations with peptide fragments from Parkinson’s disease genes. Dalton Transactions, 42(17), 5964–5974.

    CAS  PubMed  Google Scholar 

  30. Dokken, K. M., Parsons, J. G., McClure, J., & Gardea-Torresdey, J. L. (2009). Synthesis and structural analysis of copper(II) cysteine complexes. Inorganica Chimica Acta, 362(2), 395–401.

    CAS  Google Scholar 

  31. Firdaus, M. L., Alwi, W., Trinoveldi, F., Rahayu, I., Rahmidar, L., & Warsito, K. (2014). Determination of chromium and iron using digital image-based colorimetry. Procedia Environmental Sciences, 20, 298–304.

    CAS  Google Scholar 

  32. Apyari, V. V., Dmitrienko, S. G., & Zolotov, Y. A. (2011). Analytical possibilities of digital colorimetry: determination of nitrite using polyurethane foam. Moscow University Chemistry Bulletin, 66(1), 32–37.

    Google Scholar 

  33. Gonzalez, R. C., & Woods, R. E. (2006). Digital image processing (3rd ed.). New Jersey: Prentice-Hall.

    Google Scholar 

  34. Stroebel, L. and Zakia, R. D. (1993). The focal encyclopedia of photography. ed. Focal Press.

  35. Ooi, S. i., Carter, D., & Fernando, Q. (1967). The structure of a chelate of copper(II) with 1-(2-pyridylazo)-2-naphthol. Chemical Communications (London), (24), 1301–1302.

  36. Szabó, L., Herman, K., Mircescu, N. E., Fălămaş, A., Leopold, L. F., Leopold, N., Buzumurgă, C., & Chiş, V. (2012). SERS and DFT investigation of 1-(2-pyridylazo)-2-naphthol and its metal complexes with Al(III), Mn(II), Fe(III), Cu(II), Zn(II) and Pb(II). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 93, 266–273.

    Google Scholar 

  37. Walsh, M. J., Goodnow, S. D., Vezeau, G. E., Richter, L. V., & Ahner, B. A. (2015). Cysteine enhances bioavailability of copper to marine phytoplankton. Environmental Science & Technology, 49(20), 12145–12152.

    CAS  Google Scholar 

  38. Berg, J. M., Tymoczko, J. L., & Stryer, L. (2002). Biochemistry (5th ed.). W.H. Freeman.

  39. Skoog, D. A., West, D. M., Holler, F. J. and Crouch, S. R. (2013). Fundamentals of analytical chemistry. ed. Cengage Learning.

  40. de Silva, A. P., Uchiyama, S., Vance, T. P., & Wannalerse, B. (2007). A supramolecular chemistry basis for molecular logic and computation. Coordination Chemistry Reviews, 251(13–14), 1623–1632.

    Google Scholar 

  41. Lu, W., Zhang, M., Liu, K., Fan, B., Xia, Z., & Jiang, L. (2011). A fluoride-selective colorimetric and fluorescent chemosensor and its use for the design of molecular-scale logic devices. Sensors and Actuators B: Chemical, 160(1), 1005–1010.

    CAS  Google Scholar 

  42. Rafii, M., Elango, R., Courtney-Martin, G., House, J. D., Fisher, L., & Pencharz, P. B. (2007). High-throughput and simultaneous measurement of homocysteine and cysteine in human plasma and urine by liquid chromatography–electrospray tandem mass spectrometry. Analytical Biochemistry, 371(1), 71–81.

    CAS  PubMed  Google Scholar 

  43. Brigham, M. P., Stein, W. H., & Moore, S. The concentrations of cysteine and cystine in human blood plasma. The Journal of Clinical Investigation, 39(11), 1633–1638.

  44. Kuśmierek, K., Głowacki, R., & Bald, E. (2006). Analysis of urine for cysteine, cysteinylglycine, and homocysteine by high-performance liquid chromatography. Analytical and Bioanalytical Chemistry, 385(5), 855–860.

    PubMed  Google Scholar 

  45. Xu, X., Qiao, J., Li, N., Qi, L., & Zhang, S. (2015). Fluorescent probe for turn-on sensing of L-cysteine by ensemble of AuNCs and polymer protected AuNPs. Analytica Chimica Acta, 879, 97–103.

    CAS  PubMed  Google Scholar 

  46. Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82(1), 70–77.

    CAS  PubMed  Google Scholar 

  47. Burtis, C. A. and Bruns, D. E. (2014). Tietz fundamentals of clinical chemistry and molecular diagnostics—e-book. ed. Elsevier Health Sciences.

  48. Lu, J., Sun, C., Chen, W., Ma, H., Shi, W., & Li, X. (2011). Determination of non-protein cysteine in human serum by a designed BODIPY-based fluorescent probe. Talanta, 83(3), 1050–1056.

    CAS  PubMed  Google Scholar 

  49. Anderson, R. L. (1987). Practical statistics for analytical chemists. ed. Van Nostrand Reinhold.

  50. Xue, S., Ding, S., Zhai, Q., Zhang, H., & Feng, G. (2015). A readily available colorimetric and near-infrared fluorescent turn-on probe for rapid and selective detection of cysteine in living cells. Biosensors & Bioelectronics, 68, 316–321.

    CAS  Google Scholar 

  51. Farhadi, K., Forough, M., Pourhossein, A., & Molaei, R. (2014). Highly sensitive and selective colorimetric probe for determination of l-cysteine in aqueous media based on Ag/Pd bimetallic nanoparticles. Sensors and Actuators B: Chemical, 202, 993–1001.

    CAS  Google Scholar 

  52. Khajehsharifi, H., & Sheini, A. (2014). A selective naked-eye detection and determination of cysteine using an indicator-displacement assay in urine sample. Sensors and Actuators B: Chemical, 199, 457–462.

    CAS  Google Scholar 

Download references

Funding

The authors wish to acknowledge the support of this work by Payame Noor University Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Tavallali.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• A novel IDA colorimetric chemosensor was developed for the determination of cysteine.

• The paper-based chemosensor was designed according to the IDA mechanism.

• The prepared test kit was analyzed using a digital camera and the CMYK software.

• The paper strips can be applied in clinical analysis in combination with a camera.

• The color changes in aqueous and paper-based chemosensors are reversible.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deilamy-Rad, G., Asghari, K. & Tavallali, H. Development of a Reversible Indicator Displacement Assay Based on the 1-(2-Pyridylazo)-2-naphthol for Colorimetric Determination of Cysteine in Biological Samples and Its Application to Constructing the Paper Test Strips and a Molecular-Scale Set/Reset Memorized Device. Appl Biochem Biotechnol 192, 85–102 (2020). https://doi.org/10.1007/s12010-019-03165-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03165-0

Keywords

Navigation