Skip to main content

Advertisement

Log in

Carbon-Phosphorus Lyase—the State of the Art

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Organophosphonates are molecules that contain a very chemically stable carbon-phosphorus (C-P) bond. Microorganisms can utilize phosphonates as potential source of crucial elements for their growth, as developed several pathways to metabolize these compounds. One among these pathways is catalyzed by C-P lyase complex, which has a broad substrate specifity; therefore, it has a wide application in degradation of herbicides deposited in the environment, such as glyphosate. This multi-enzyme system accurately recognized in Escherichia coli and genetic studies have demonstrated that it is encoded by phn operon containing 14 genes (phnC-phnP). The phn operon is a member of the Pho regulon induced by phosphate starvation. Ability to degradation of phosphonates is also found in other microorganisms, especially soil and marine bacteria, that have homologous genes to those in E. coli. Despite the existence of differences in structure and composition of phn gene cluster, each of these strains contains phnGHIJKLM genes necessary in the C-P bond cleavage mechanism. The review provides a detailed description and summary of achievements on the C-P lyase enzymatic pathway over the last 50 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Santos-Beneit, F. (2016). Frontiers in Microbiology, 6, 402.

    Google Scholar 

  2. Chin, J. P., McGrath, J. W., & Quinn, J. P. (2016). Current Opinion in Chemical Biology, 31, 50–57.

  3. Young, C. L., & Ingall, E. D. (2010). Aquatic Geochemistry, 16(4), 563–574.

    CAS  Google Scholar 

  4. Villarreal-Chiu, J. F., Quinn, J. P., & McGrath, J. W. (2012). Frontiers in Microbiology, 3, 19.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kamat, S. S., Burgos, E. S., & Raushel, F. M. (2013a). Biochemistry, 52(42), 7366–7368.

  6. Yakovleva, G. M., Kim, S. K., & Wanner, B. L. (1998). Applied Microbiology and Biotechnology, 49(5), 573–578.

    CAS  PubMed  Google Scholar 

  7. Nowack, B. (2003). Water research, 37(11), 2533–2546.

  8. Lee, K. S., Metcalf, W. W., & Wanner, B. L. (1992). Journal of Bacteriology, 174(8), 2501–2510.

  9. Pipke, R., & Amrhein, N. (1988a). FEBS Letters, 236(1), 135–138.

    CAS  Google Scholar 

  10. Metcalf, W. W., & Wanner, B. L. (1993a). Gene, 129(1), 27–32.

  11. Kononova, S. V., & Nesmeyanova, M. A. (2002). Biochemistry (Moscow), 67(2), 184–195.

  12. Ternan, N. G., Mc Grath, J. W., Mc, M. G., & Quinn, J. P. (1998). World Journal of Microbiology and Biotechnology, 14(5), 635–647.

    CAS  Google Scholar 

  13. Ren, Z., Ranganathan, S., Zinnel, N. F., Russell, W. K., Russell, D. H., & Raushel, F. M. (2015). Biochemistry, 54(21), 3400–3411.

  14. Klimek-Ochab, M. (2008). Current Trends in Microbiology, 4, 91.

    CAS  Google Scholar 

  15. Wanner B.L. (1996) Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed. ASM Press, Washington, DC, 41, 1357–1381.

  16. Zeleznick, L., Myers, T. C., & Titchener, E. B. (1963). Biochimica et Biophysica Acta, 78(3), 546–547.

    CAS  PubMed  Google Scholar 

  17. Wackett, L. P., Wanner, B. L., Venditti, C., & Walsh, C. (1987b). Journal of Bacteriology, 169(4), 1753–1756.

  18. Hsieh, Y. J., & Wanner, B. L. (2010). Current opinion in microbiology, 13(2), 198–203.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Tetsch, L., & Jung, K. (2009). Molecular Microbiology, 73(6), 982–991.

  20. Crépin, S., Chekabab, S. M., Le Bihan, G., Bertrand, N., Dozois, C. M., & Harel, J. (2011). Veterinary Microbiology, 153(1), 82–88.

    PubMed  Google Scholar 

  21. Makino, K., Amemura, M., Kim, S. K., Nakata, A., & Shinagawa, H. (1994). Microbiology, 71(5), 497-511.

  22. Hsieh, Y. J., & Wanner, B. L. (2012). Current Opinion in Microbiology, 13(2), 198–203.

    Google Scholar 

  23. Kamat, S. S., & Raushel, F. M. (2013b). Current Opinion in Chemical Biology, 17(4), 589–596.

  24. Makino, K., Shinagawa, H., Amemura, M., & Nakata, A. (1986a). Journal of Molecular Biology, 192(3), 549–556.

  25. Makino, K., Shinagawa, H., Amemura, M., & Nakata, A. (1986b). Journal of Molecular Biology, 190(1), 37–44.

  26. Lamarche, M. G., Wanner, B. L., Crépin, S., & Harel, J. (2008). FEMS Microbiology Reviews, 32(3), 461–473.

  27. Wanner B.L. (1994a). Phosphate in microorganisms: cellular and molecular biology, ASM Press, Washington, DC, 12–21.

  28. Van Dien, S. J., & Keasling, J. D. (1998). Journal of Theoretical Biology, 190(1), 37–49.

  29. Surin, B. P., Rosenberg, H., & Cox, G. B. (1985). Journal of Bacteriology, 161(1), 189–198.

  30. Schurdell, M. S., Woodbury, G. M., & McCleary, W. R. (2007). Journal of Bacteriology, 189(3), 1150–1153.

  31. Chan, F. Y., & Torriani, A. (1996). Journal of Bacteriology, 178(13), 3974–3977.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Oganesyan, V., Oganesyan, N., Adams, P. D., Jancarik, J., Yokota, H. A., Kim, R., & Kim, S. H. (2005). Journal of Bacteriology, 187(12), 4238–4244.

  33. Gardner, S. G., John, K. D., Tanner, R., & McCleary, W. R. (2014). Journal of Bacteriology, 196(9), 1741–1752.

  34. Wilmes-Riesenberg, M. R., & Wanner, B. L. (1992). Journal of Bacteriology, 174(14), 4558–4575.

  35. Baek, J. H., Kang, Y. J., & Lee, S. Y. (2007). FEMS Microbiology Letters, 277(2), 254–259.

  36. Hoagland R.E. and Duke S.O. (1982). Biochemical effects of glyphosate (N-(phosphonomethyl) glycine)[Lemna, higher plants, phenylalanine ammonialyase]. In ACS symposium series American Chemical Society.

  37. Williams, G. M., Kroes, R., & Munro, I. C. (2000). Regulatory Toxicology and Pharmacology, 31(2), 117–165.

    CAS  PubMed  Google Scholar 

  38. Schönbrunn, E., Eschenburg, S., Shuttleworth, W. A., Schloss, J. V., Amrhein, N., Evans, J. N., & Kabsch, W. (2001). Proceedings of the National Academy of Sciences, 98(4), 1376–1380.

    Google Scholar 

  39. Wang, S., Seiwert, B., Kästner, M., Miltner, A., Schäffer, A., Reemtsma, T., & Nowak, K. M. (2016). Water Research, 99, 91–100.

    CAS  PubMed  Google Scholar 

  40. Zhan, H., Feng, Y., Fan, X., & Che, S. (2018). Applied Microbiology and Biotechnology, 102(12), 5033–5043.

  41. Balthazor, T. M., & Hallas, L. E. (1986). Applied and Environmental Microbiology, 51(2), 432–434.

  42. Jacob, G. S., Garbow, J. R., Hallas, L. E., Kimack, N. M., Kishore, G. M., & Schaefer, J. (1988). Applied and Environmental Microbiology, 54(12), 2953–2958.

  43. Pipke, R., & Amrhein, N. (1988b). Applied and Environmental Microbiology, 54(5), 1293–1296.

  44. McAuliffe, K. S., Hallas, L. E., & Kulpa, C. F. (1990). Journal of Industrial Microbiology, 6(3), 219–221.

    CAS  Google Scholar 

  45. Peñaloza-Vazquez, A., Mena, G. L., Herrera-Estrella, L., & Bailey, A. M. (1995). Applied and Environmental Microbiology, 61(2), 538–543.

  46. Kishore, G. M., & Jacob, G. S. (1987). Journal of Biological Chemistry, 262(25), 12164–12168.

  47. Pipke, R., Amrhein, N., Jacob, G. S., Schaefer, J., & Kishore, G. M. (1987). European Journal of Biochemistry, 165(2), 267–273.

    CAS  PubMed  Google Scholar 

  48. Liu, C. M., McLean, P. A., Sookdeo, C. C., & Cannon, F. C. (1991). Applied and Environmental Microbiology, 57(6), 1799–1804.

  49. Nomura, N. S., & Hilton, H. W. (1977). Weed Research, 17(2), 113–121.

    CAS  Google Scholar 

  50. Dick, R. E., & Quinn, J. P. (1995a). Applied Microbiology and Biotechnology, 43(3), 545–550.

  51. Dick, R. E., & Quinn, J. P. (1995b). 4ASW. FEMS Microbiology Letters, 134(2-3), 177–182.

    CAS  Google Scholar 

  52. Zechel, D. L. (2016). Structure, 24(1), 3–4.

  53. Agarwal, V., Borisova, S. A., Metcalf, W. W., van der Donk, W. A., & Nair, S. K. (2001). Chemistry & Biology, 18(10), 1230–1240.

    Google Scholar 

  54. Avila, L. Z., Loo, S. H., & Frost, J. W. (1987). Journal of the American Chemical Society, 109(22), 6758–6764.

    CAS  Google Scholar 

  55. Frost, J. W., Loo, S., Cordeiro, M. L., & Li, D. (1987). Journal of the American Chemical Society, 109(7), 2166–2171.

    CAS  Google Scholar 

  56. Wackett, L. P., Shames, S. L., Venditti, C. P., & Walsh, C. T. (1987a). Journal of Bacteriology, 169(2), 710–717.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Makino, K., Kim, S. K., Shinagawa, H., Amemura, M., & Nakata, A. (1991). Journal of Bacteriology, 173(8), 2665–2672.

  58. Rizk, S. S., Cuneo, M. J., & Hellinga, H. W. (2006). Protein Science, 15(7), 1745–1751.

  59. Kamat, S. S., Williams, H. J., & Raushel, F. M. (2011). Nature, 480(7378), 570–573.

  60. Horsman, G. P., & Zechel, D. L. (2016). Chemical reviews, 117(8), 5704–5783.

    PubMed  Google Scholar 

  61. Hove-Jensen, B., Rosenkrantz, T. J., Haldimann, A., & Wanner, B. L. (2003). Journal of Bacteriology, 185(9), 2793–2801.

  62. Hove-Jensen, B., McSorley, F. R., & Zechel, D. L. (2012). PloS One, 7(10), e46416.

  63. Hove-Jensen, B., McSorley, F. R., & Zechel, D. L. (2011). Journal of the American Chemical Society, 133(10), 3617–3624.

    CAS  PubMed  Google Scholar 

  64. Hove-Jensen, B., Rosenkrantz, T. J., Zechel, D. L., & Willemoës, M. (2010). Journal of bacteriology, 192(1), 370–374.

    CAS  PubMed  Google Scholar 

  65. Avila, L. Z., Draths, K. M., & Frost, J. W. (1991). Bioorganic & Medicinal Chemistry Letters, 1(1), 51–54.

    CAS  Google Scholar 

  66. Booker, S. J., & Grove, T. L. (2010). F1000 Biology Reports, 2, 52.

    PubMed  PubMed Central  Google Scholar 

  67. Podzelinska, K., He, S. M., Wathier, M., Yakunin, A., Proudfoot, M., Hove-Jensen, B., & Jia, Z. (2009). Journal of Biological Chemistry, 284(25), 17216–17226.

  68. Ghodge, S. V., Cummings, J. A., Williams, H. J., & Raushel, F. M. (2013). Journal of the American Chemical Society, 135(44), 16360–16363.

    CAS  PubMed  Google Scholar 

  69. Vandepitte, V., & Verstraete, W. (1995). Biodegradation, 6(2), 157–165.

    CAS  Google Scholar 

  70. Kamat, S. S., Williams, H. J., Dangott, L. J., Chakrabarti, M., & Raushel, F. M. (2013c). Nature, 497(7447), 132–136.

  71. Hove-Jensen, B., Zechel, D. L., & Jochimsen, B. (2014). Microbiology and Molecular Biology Reviews, 78(1), 176–197.

  72. Seweryn, P., Van, L. B., Kjeldgaard, M., Russo, C. J., Passmore, L. A., Hove-Jensen, B., & Brodersen, D. E. (2015). Nature, 525(7567), 68–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Horiguchi M. and Kandatstu M. (1959). Nature, 184(4690), 901–902.

  74. Kafarski P. and Mastalerz P. (1984). Aminophosphonates: natural occurrence, biochemistry and biological properties. Akademie-Industrie Komplex Arzneimitterforschung Institut fur Wirkstofforschung.

  75. La Nauze, J. M., Rosenberg, H., & Shaw, D. C. (1970). Biochimica et Biophysica Acta (BBA)-Enzymology, 212(2), 332–350.

    Google Scholar 

  76. Wanner, B. L., Wieder, S., & McSharry, R. (1981). Journal of Bacteriology, 146(1), 93–101.

  77. Cordeiro, M. L., Pompliano, D. L., & Frost, J. W. (1986). Journal of the American Chemical Society, 108(2), 332–334.

    CAS  Google Scholar 

  78. Shames, S. L., Wackett, L. P., LaBarge, M. S., Kuczkowski, R. L., & Walsh, C. T. (1987). Bioorganic Chemistry, 15(4), 366–373.

    CAS  Google Scholar 

  79. Pipke, R., & Amrhein, N. (1988c). Applied and Environmental Microbiology, 54(11), 2868–2870.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Murata, K., Higaki, N., & Kimura, A. (1989). Journal of Bacteriology, 171(8), 4504–4506.

  81. Chen, C. M., Ye, Q. Z., Zhu, Z. M., Wanner, B. L., & Walsh, C. T. (1990). Journal of Biological Chemistry, 265(8), 4461–4471.

  82. Stern, M. J., Ames, G. F. L., Smith, N. H., Robinson, E. C., & Higgins, C. F. (1984). Cell, 37(3), 1015–1026.

    CAS  PubMed  Google Scholar 

  83. Metcalf, W. W., & Wanner, B. L. (1991). Journal of Bacteriology, 173(2), 587–600.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Iqbal, S., Parker, G., Davidson, H., Moslehi-Rahmani, E., & Robson, R. L. (2004). Journal of Bacteriology, 186(18), 6118–6123.

  85. Kim, S. K., Makino, K., Amemura, M., Shinagawa, H., & Nakata, A. (1993). Journal of Bacteriology, 175(5), 1316–1324.

  86. Metcalf, W. W., & Wanner, B. L. (1993b). Journal of Bacteriology, 175(11), 3430–3442.

  87. Lee, K. S., & Kwak, I. Y. (1995). The Journal of Microbiology, 33(4), 328–333.

  88. Matys, S. V., Laurinavichius, K. S., Krupyanko, V. I., & Nesmeyanova, M. A. (2001). Process Biochemistry, 36(8), 821–827.

    CAS  Google Scholar 

  89. Matys, S. V., Kuzmina, N. M., Laurinavichius, K. S., & Nesmeyanova, M. A. (2004). Process Biochemistry, 39(9), 1063–1071.

    CAS  Google Scholar 

  90. Kononova, S. V., Trutko, S. M., & Laurinavichus, K. S. (2007). Applied Biochemistry and Microbiology, 43(4), 394–398.

    CAS  Google Scholar 

  91. Vetting, M. W., de Carvalho, L. P. S., Yu, M., Hegde, S. S., Magnet, S., Roderick, S. L., & Blanchard, J. S. (2005). Archives of Biochemistry and Biophysics, 433(1), 212–226.

  92. Errey, J. C., & Blanchard, J. S. (2006). Biochemistry, 45(9), 3033–3039.

  93. Adams, M. A., Luo, Y., Hove-Jensen, B., He, S. M., van Staalduinen, L. M., Zechel, D. L., & Jia, Z. (2008). Journal of Bacteriology, 190(3), 1072–1083.

  94. Podzelinska, K., He, S., Soares, A., Zechel, D., Hove-Jensen, B., & Jia, Z. (2008). Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 64(6), 554–557.

    CAS  Google Scholar 

  95. Jochimsen, B., Lolle, S., McSorley, F. R., Nabi, M., Stougaard, J., Zechel, D. L., & Hove-Jensen, B. (2011). Proceedings of the National Academy of Sciences, 108(28), 11393–11398.

    CAS  Google Scholar 

  96. He, S. M., Wathier, M., Podzelinska, K., Wong, M., McSorley, F. R., Asfaw, A., & Zechel, D. L. (2011). Biochemistry, 50(40), 8603–8615.

    CAS  PubMed  Google Scholar 

  97. Alicea, I., Marvin, J. S., Miklos, A. E., Ellington, A. D., Looger, L. L., & Schreiter, E. R. (2011). Journal of Molecular Biology, 414(3), 356–369.

  98. Yang, K., Ren, Z., Raushel, F. M., & Zhang, J. (2016). Structure, 24(1), 37–42.

  99. Gama, S., Vogt, M., Kalina, T., Hupp, K., Hammerschmidt, F., Pallitsch, K., Zechel, D. L. (2019). ACS chemical biology, 14(4), 735–741.

  100. Karl, D. M., Beversdorf, L., Björkman, K. M., Church, M. J., Martinez, A., & Delong, E. F. (2008). Nature Geoscience, 1(7), 473.

    CAS  Google Scholar 

  101. Ulrich, E. C., Kamat, S. S., Hove-Jensen, B., & Zechel, D. L. (2018). Methods in enzymology, 605, 351–426, Academic Press.

  102. Metcalf, W. W., Griffin, B. M., Cicchillo, R. M., Gao, J., Janga, S. C., Cooke, H. A., & Van Der Donk, W. A. (2012). Science, 337(6098), 1104–1107.

  103. Dyhrman, S. T., Chappell, P. D., Haley, S. T., Moffett, J. W., Orchard, E. D., Waterbury, J. B., & Webb, E. A. (2006). Nature, 439(7072), 68–71.

  104. Kaneko, T., Nakamura, Y., Wolk, C. P., Kuritz, T., Sasamoto, S., Watanabe, A., & Kishida, Y. (2001). DNA Research, 8(5), 205–213.

    CAS  PubMed  Google Scholar 

  105. Forlani, G., Pavan, M., Gramek, M., Kafarski, P., & Lipok, J. (2008). Plant and Cell Physiology, 49(3), 443–456.

  106. Gomez-Garcia, M. R., Davison, M., Blain-Hartnung, M., Grossman, A. R., & Bhaya, D. (2011). The ISME Journal, 5(1), 141–149.

    CAS  PubMed  Google Scholar 

  107. Poehlein, A., Daniel, R., Schink, B., & Simeonova, D. D. (2013). BMC Genomics, 14(1), 1.

    Google Scholar 

  108. Carini, P., White, A. E., Campbell, E. O., & Giovannoni, S. J. (2014). Nature Communications, 5, 4346.

  109. Yao M., Henny C. and Maresca J.A. (2016) Applied and Environmental Microbiology 82(23), 6994–7003.

  110. Moore, J. K., Braymer, H. D., & Larson, A. D. (1983). Applied and Environmental Microbiology, 46(2), 316–320.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Kertesz, M., Elgorriaga, A., & Amrhein, N. (1991). Biodegradation, 2(1), 53–59.

    CAS  PubMed  Google Scholar 

  112. Selvapandiyan, A., & Bhatnagar, R. K. (1994b). Applied Microbiology and Biotechnology, 40(6), 876–882.

    CAS  Google Scholar 

  113. Selvapandiyan, A., & Bhatnagar, R. K. (1994a). Current Microbiology, 29(5), 255–261.

    CAS  Google Scholar 

  114. Zboińska, E., Lejczak, B., & Kafarski, P. (1992). Applied and Environmental Microbiology, 58(9), 2993–2999.

  115. Schowanek, D., & Verstraete, W. (1990). Applied and Environmental Microbiology, 56(4), 895–903.

  116. Parker, G. F., Higgins, T. P., Hawkes, T., & Robson, R. L. (1999). Journal of Bacteriology, 181(2), 389–395.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Imazu, K., Tanaka, S., Kuroda, A., Anbe, Y., Kato, J., & Ohtake, H. (1998). Applied and Environmental Microbiology, 64(10), 3754–3758.

  118. Quinn, J. P., Peden, J. M., & Dick, R. E. (1989). Applied Microbiology and Biotechnology, 31(3), 283–287.

    CAS  Google Scholar 

  119. Obojska, A., Lejczak, B., & Kubrak, M. (1991). Applied Microbiology and Biotechnology, 51(6), 872–876.

    Google Scholar 

  120. Obojska, A., & Lejczak, B. (2003). Applied Microbiology and Biotechnology, 62(5-6), 557–563.

  121. White, A. K., & Metcalf, W. W. (2004). Journal of Bacteriology, 186(14), 4730–4739.

  122. Vera, M., Pagliai, F., Guiliani, N., & Jerez, C. A. (2008). Applied and Environmental Microbiology, 74(6), 1829–1835.

  123. Sviridov, A. V., Shushkova, T. V., Zelenkova, N. F., Vinokurova, N. G., Morgunov, I. G., Ermakova, I. T., & Leontievsky, A. A. (2012). Applied Microbiology and Biotechnology, 93(2), 787–796.

  124. Sviridov, A. V., Zelenkova, N. F., Vinokurova, N. G., Ermakova, I. T., & Leontievsky, A. A. (2011). Biochemistry (Moscow), 76(6), 720–725.

  125. Ermakova, I. T., Shushkova, T. V., Sviridov, A. V., Zelenkova, N. F., Vinokurova, N. G., Baskunov, B. P., & Leontievsky, A. A. (2017). Archives of microbiology, 199(5), 665–675.

    CAS  PubMed  Google Scholar 

  126. Selvi, A. A., & Manonmani, H. K. (2015).  Preparative Biochemistry and Biotechnology, 45(4), 380–397.

  127. Zboińska, E., Maliszewska, I., Lejczak, B., & Kafarski, P. (1992). Letters in Applied Microbiology, 15(6), 269–272.

    Google Scholar 

  128. Bujacz, B., Wieczorek, P., Krzysko-Lupicka, T., Golab, Z., Lejczak, B., & Kafarski, P. (1995). Applied and Environmental Microbiology, 61(8), 2905–2910.

  129. Krzyśko-Lupicka, T., Strof, W., Kubś, K., Skorupa, M., Wieczorek, P., Lejczak, B., & Kafarski, P. (1997). Applied Microbiology and Biotechnology, 48(4), 549–552.

    PubMed  Google Scholar 

  130. Sailaja, K. K., & Satyaprasad, K. (2006). Journal of Environmental Science & Engineering, 48(3), 189–190.

  131. Arfarita, N., Imai, T., Kanno, A., Higuchi, T., Yamamoto, K., & Sekine, M. (2011). Journal of Water and Environment Technology, 9(4), 391–400.

    Google Scholar 

  132. McMullan, G., Watkins, R., Harper, D. B., & Quinn, J. P. (1991). Biochemistry International, 25(2), 271–279.

  133. Sviridov, A. V., Shushkova, T. V., Ermakova, I. T., Ivanova, E. V., Epiktetov, D. O., & Leontievsky, A. A. (2015). Applied Biochemistry and Microbiology, 51(2), 188–195.

    CAS  Google Scholar 

Download references

Funding

The work was financed by a statutory activity subsidy from the Polish Ministry of Science and Higher Education for the Faculty of Chemistry of Wrocław University of Science and Technology. All molecular modeling studies and BLAST comparison were performed in BIOVIA Discovery Studio package.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Stosiek.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PNG 115 kb)

ESM 2

(PNG 119 kb)

ESM 3

(PNG 202 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stosiek, N., Talma, M. & Klimek-Ochab, M. Carbon-Phosphorus Lyase—the State of the Art. Appl Biochem Biotechnol 190, 1525–1552 (2020). https://doi.org/10.1007/s12010-019-03161-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03161-4

Keywords

Navigation