Skip to main content
Log in

Denitrifying Microbial Community Structure and bamA Gene Diversity of Phenol Degraders in Soil Contaminated from the Coking Process

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Phenolic compounds are the dominant pollutants in soils contaminated by the coking industry. Ring opening by the hydroxylase gene (bamA) is the key step in the benzoyl-CoA degradation pathway under anaerobic conditions, and a broad spectrum of microorganisms possesses this functional gene, including denitrifiers. The present study analyzed the community structure of denitrifying bacteria and the diversity of the bamA gene for mixed cultures enriched from soil collected at a coking industrial site and then grown under nitrate-reducing conditions on phenol or p-hydroxybenzoate (4HBA), a key intermediate product of anaerobic phenol degradation. Illumina sequencing of the 16S rRNA gene showed different bacterial compositions between the two cultures. The dominant phyla were Proteobacteria, Armatimonadetes, and Planctomycetes in the phenol culture and Proteobacteria and Bacteroidetes in the 4HBA culture. Phylogenetic analysis further demonstrated that bamA genes were associated with four clusters of bacteria, three of known bacteria and one of uncultured bacteria. The diversity of the bamA gene differed from that reported in anaerobic aromatic degradation cultures, suggesting that these enriched cultures may contain new strains unique to coking-contaminated soils. The present study further validates the potential application of this functional gene as a marker for anaerobic biodegradation processes in enrichment cultures from contaminated soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahmed, S., Rasul, M. G., Brown, R., & Hashib, M. A. (2011). Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review. Journal of Environmental Management, 92(3), 311–330.

    CAS  PubMed  Google Scholar 

  2. Schie, P. M. V., & Young, L. Y. (1998). Isolation and characterization of phenol-degrading denitrifying bacteria. Applied and Environmental Microbiology, 64(7), 2432–2438.

    PubMed  PubMed Central  Google Scholar 

  3. Schink, B., Philipp, B., & Müller, J. (2000). Anaerobic degradation of phenolic compounds. Naturwissenschaften, 87(1), 12–23.

    CAS  PubMed  Google Scholar 

  4. Baek, S. H., Kim, K. H., Yin, C. R., Jeon, C. O., Im, W. T., Kim, K. K., & Lee, S. T. (2003). Isolation and characterization of bacteria capable of degrading phenol and reducing nitrate under low-oxygen conditions. Current Microbiology, 47(6), 462–466.

    PubMed  Google Scholar 

  5. Li, Z., Suzuki, D., Zhang, C., Yang, S., Nan, J., & Yoshida, N. (2014). Anaerobic 4-chlorophenol mineralization in an enriched culture under iron-reducing conditions. Journal of Bioscience and Bioengineering, 118(5), 529–532.

    CAS  PubMed  Google Scholar 

  6. Narmandakh, A., Gad’On, N., Drepper, F., Knapp, B., Haehnel, W., & Fuchs, G. (2006). Phosphorylation of phenol by phenylphosphate synthase: role of histidine phosphate in catalysis. Journal of Bacteriology, 188(22), 7815–7822.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Schmeling, S., Narmandakh, A., Schmitt, O., Gad’On, N., Schühle, K., & Fuchs, G. (2004). Phenylphosphate synthase: a new phosphotransferase catalyzing the first step in anaerobic phenol metabolism in Thauera aromatica. Journal of Bacteriology, 186(23), 8044–8057.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Schuhle, K., & Fuchs, G. (2004). Phenylphosphate carboxylase: a new C-C lyase involved in anaerobic phenol metabolism in Thauera aromatica. Journal of Bacteriology, 186(14), 4556–4567.

    PubMed  PubMed Central  Google Scholar 

  9. Kuntze, K., Shinoda, Y., Moutakki, H., Mcinerney, M. J., Vogt, C., & Richnow, H. H. (2008). 6-oxocyclohex-1-ene-1-carbonyl-coenzyme A hydrolases from obligately anaerobic bacteria: characterization and identification of its gene as a functional marker for aromatic compounds degrading anaerobes. Environmental Microbiology, 10(6), 1547–1556.

    CAS  PubMed  Google Scholar 

  10. Harwood, C. S., Burchhardt, G., Herrmann, H., & Fuchs, G. (1998). Anaerobic metabolism of aromatic compounds via the benzoyl-coA pathway. FEMS Microbiology Reviews, 22(5), 439–458.

    CAS  Google Scholar 

  11. Boll, M., Löffler, C., Morris, B. E. L., & Kung, J. W. (2014). Anaerobic degradation of homocyclic aromatic compounds via arylcarboxyl-coenzyme A esters: organisms, strategies and key enzymes. Environmental Microbiology, 16(3), 612–627.

    CAS  PubMed  Google Scholar 

  12. Porter, A. W., & Young, L. Y. (2013). The bamA gene for anaerobic ring fission is widely distributed in the environment. Frontiers in Microbiology, 4, 302.

    PubMed  PubMed Central  Google Scholar 

  13. Higashioka, Y., Kojima, H., & Fukui, M. (2011). Temperature-dependent differences in community structure of bacteria involved in degradation of petroleum hydrocarbons under sulfate-reducing conditions. Journal of Applied Microbiology, 110(1), 314–322.

    CAS  PubMed  Google Scholar 

  14. Kuntze, K., Vogt, C., Richnow, H. H., & Boll, M. (2011). Combined application of PCR-based functional assays for the detection of aromatic-compound-degrading anaerobes. Applied and Environmental Microbiology, 77(14), 5056–5061.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Staats, M., Braster, M., & Röling, W. F. M. (2011). Molecular diversity and distribution of aromatic hydrocarbon-degrading anaerobes across a landfill leachate plume. Environmental Microbiology, 13(5), 1216–1227.

    CAS  PubMed  Google Scholar 

  16. Li, Y. N., Porter, A. W., Mumford, A., Zhao, X. H., & Young, L. Y. (2012). Bacterial community structure and bamA gene diversity in anaerobic degradation of toluene and benzoate under denitrifying conditions. Journal of Applied Microbiology, 112(2), 269–279.

    CAS  PubMed  Google Scholar 

  17. Porter, A. W., & Young, L. Y. (2014). Benzoyl-CoA, a universal biomarker for anaerobic degradation of aromatic compounds. Advances in Applied Microbiology, 88, 167–203.

    CAS  PubMed  Google Scholar 

  18. Sun, W., Sun, X., & Cupples, A. M. (2014). Presence, diversity and enumeration of functional genes (bssA and bamA) relating to toluene degradation across a range of redox conditions and inoculum sources. Biodegradation, 25(2), 189–203.

    CAS  PubMed  Google Scholar 

  19. Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., & Knight, R. (2011). Global patterns of 16s rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences, 108(Suppl 1), 4516–4522.

    CAS  Google Scholar 

  20. Evans, P. J., Mang, D. T., Kim, K. S., & Young, L. Y. (1991). Anaerobic degradation of toluene by a denitrifying bacterium. Applied and Environmental Microbiology, 57(4), 1139–1145.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Lane, D. J. (1991). Nucleic acid techniques in bacterial systematic (16S/23S rRNA sequencing) (Vol. 2, pp. 115–175). Chichester: Wiley.

    Google Scholar 

  22. Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Price, M. N., Dehal, P. S., & Arkin, A. P. (2010). Fasttree 2 – approximately maximum-likelihood trees for large alignments. Plos One, 5, e9490.

    PubMed  PubMed Central  Google Scholar 

  24. Na, J. G., Lee, M. K., Yun, Y. M., Moon, C., Kim, M. S., & Kim, D. H. (2016). Microbial community analysis of anaerobic granules in phenol-degrading UASB by next generation sequencing. Biochemical Engineering Journal, 112, 241–248.

    CAS  Google Scholar 

  25. Cheng, C., Zhou, Z., Niu, T., An, Y., Shen, X., Pan, W., Chen, Z. H., & Liu, J. (2017). Effects of side-stream ratio on sludge reduction and microbial structures of anaerobic side-stream reactor coupled membrane bioreactors. Bioresource Technology, 234, 380–388.

    CAS  PubMed  Google Scholar 

  26. van Teeseling, M. C., Mesman, R. J., Kuru, E., Espaillat, A., Cava, F., Brun, Y. V., VanNieuwenhze, M. S., Kartal, B., & van Niftrik, L. (2015). Anammox planctomycetes have a peptidoglycan cell wall. Nature Communications, 6(6878), 6878.

    PubMed  PubMed Central  Google Scholar 

  27. Ma, Q., Qu, Y., Shen, W., Zhang, Z., Wang, J., Liu, Z., Li, D., Li, H., & Zhou, J. (2014). Bacterial community compositions of coking wastewater treatment plants in steel industry revealed by Illumina high-throughput sequencing. Bioresource Technology, 179, 436–443.

    PubMed  Google Scholar 

  28. Ren, L. F., Chen, R., Zhang, X. F., Shao, J. H., & He, Y. L. (2017). Phylotypes belonging to the Bacteroidetes are known to be physiologically diverse and are found in a wide range of environments, e.g. soil, freshwater, ocean and the human gastrointestinal tract. Bioresource Technology, 244, 1121–1128.

    CAS  PubMed  Google Scholar 

  29. Ibarbalz, F. M., Figuerola, E. L., & Erijman, L. (2013). Industrial activated sludge exhibit unique bacterial community composition at high taxonomic ranks. Water Research, 47(11), 3854–3864.

    CAS  PubMed  Google Scholar 

  30. Manefield, M., Griffiths, R. I., Leigh, M. B., Fisher, R., & Whiteley, A. S. (2005). Functional and compositional comparison of two activated sludge communities remediating coking effluent. Environmental Microbiology, 7(5), 715–722.

    CAS  PubMed  Google Scholar 

  31. Mechichi, T., Stackebrandt, E., Gad’On, N., & Fuchs, G. (2002). Phylogenetic and metabolic diversity of bacteria degrading aromatic compounds under denitrifying conditions, and description of Thauera phenylacetica sp. nov., Thauera aminoaromatica sp. nov., and Azoarcus buckelii sp. nov. Archives of Microbiology, 178(1), 26–35.

    CAS  PubMed  Google Scholar 

  32. Morgan-Sagastume, F., Nielsen, J. L., & Nielsen, P. H. (2008). Substrate-dependent denitrification of abundant probe-defined denitrifying bacteria in activated sludge. FEMS Microbiology Ecology, 66(2), 447–461.

    CAS  PubMed  Google Scholar 

  33. Lee, D. J., Wong, B. T., & Adav, S. S. (2014). Azoarcus taiwanensis, sp. nov. a denitrifying species isolated from a hot spring. Applied Microbiology and Biotechnology, 98(3), 1301–1307.

    CAS  PubMed  Google Scholar 

  34. Vedler, E., Heinaru, E., Jutkina, J., Viggor, S., Koressaar, T., Remm, M., & Heinaru, A. (2013). Limnobacter spp. as newly detected phenol-degraders among Baltic Sea surface water bacteria characterised by comparative analysis of catabolic genes. Systematic and Applied Microbiology, 36(8), 525–532.

    CAS  PubMed  Google Scholar 

  35. Sass, A. M., Schmerk, C., Agnoli, K., Norville, P. J., Eberl, L., Valvano, M. A., & Mathenthiralingam, E. (2013). The unexpected discovery of a novel low-oxygen-activated locus for the anoxic persistence of Burkholderia cenocepacia. The ISME Journal, 7(8), 1568–1581.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Mi, W., Zhao, J., Ding, X., Ge, G., & Zhao, R. (2017). Treatment performance, nitrous oxide production and microbial community under low-ammonium wastewater in a CANON process. Water Science and Technology, 76(12), 3468–3477.

    CAS  PubMed  Google Scholar 

  37. Wang, Z., Yang, Y. Y., Dai, Y., & Xie, S. G. (2015). Anaerobic biodegradation of nonylphenol in river sediment under nitrate- or sulfate-reducing conditions and associated bacterial community. Journal of Hazardous Materials, 286, 306–314.

    CAS  PubMed  Google Scholar 

  38. Bai, N. (2018) Microbiological study on the formation of black and smelly water in typical areas. Master thesis, Capital University of Economics and Business, Beijing, China.

  39. Andreoni, V., Cavalca, L., Rao, M. A., Nocerino, G., Bernasconi, S., Dell’Amico, E., Colombo, M., & Gianfreda, L. (2004). Bacterial communities and enzyme activities of PAHs polluted soils. Chemosphere, 57(5), 401–412.

    CAS  PubMed  Google Scholar 

  40. Huang, Y., Hou, X., Liu, S., & Ni, J. (2016). Correspondence analysis of bio-refractory compounds degradation and microbiological community distribution in anaerobic filter for coking wastewater treatment. Chemical Engineering Journal, 304, 864–872.

    CAS  Google Scholar 

  41. Sampaio, D. S., Almeida, J. R. B., Jesus, H. E. D., Rosado, A. S., & Jurelevicius, D. (2017). Distribution of anaerobic hydrocarbon-degrading bacteria in soils from King George island, Maritime Antarctica. Microbial Ecology, 74(24), 1–11.

    Google Scholar 

  42. Ruan, M. Y., Liang, B., Mbadinga, S. M., Zhou, L., Wang, L. Y., Liu, J. F., Gu, J. D., & Mu, B. Z. (2016). Molecular diversity of bacterial bamA gene involved in anaerobic degradation of aromatic hydrocarbons in mesophilic petroleum reservoirs. International Biodeterioration & Biodegradation, 114, 122–128.

    CAS  Google Scholar 

  43. Lahme, S., Harder, J., & Rabus, R. (2012). Anaerobic degradation of 4-methylbenzoate by a newly isolated denitrifying bacterium, strain pmbn1. Applied and Environmental Microbiology, 78(5), 1606–1610.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wirth, B., Krebs, M., & Andert, J. (2015). Anaerobic degradation of increased phenol concentrations in batch assays. Environmental Science and Pollution Research, 22(23), 19048–19059.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Jianwei Wang is acknowledged for the helpful discussion in the design of the study and for the help with culture setting up. Jin Liu and Jingyi Fu are both thanked for collecting soil samples from the coking plant.

Funding

This study was supported by the Science and Technology Planning Project of Guangdong Province (No. 2017B030314092), Open Fund of Key Laboratory of Eco-geochemistry, Ministry of Natural Resources (No. ZSDHJJ201804), Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No. 2016146, 201802026), the Scientific and Technological Project of Shanxi Province (No. 2015021119), and the National Natural Science Foundation of China (No. 51378330, 51408396).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoying Wang.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, J., Wang, D. et al. Denitrifying Microbial Community Structure and bamA Gene Diversity of Phenol Degraders in Soil Contaminated from the Coking Process. Appl Biochem Biotechnol 190, 966–981 (2020). https://doi.org/10.1007/s12010-019-03144-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03144-5

Keywords

Navigation