Skip to main content
Log in

Bioprocess Evaluation of Petroleum Wastewater Treatment with Zinc Oxide Nanoparticle for the Production of Methane Gas: Process Assessment and Modelling

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The process evaluation of zinc oxide nanoparticle (ZnO NP) was added to enhance the degradation of petroleum wastewater (PWW) fermentation system with different mixing ratios for enhancing methane production. The results showed that the highest methane yield and total solids (TS) removal ratio reached 485 mL/g-VS L PWW added and 81.9% at the ZnO NP g-VS L PWW ratio of 4.5:15, respectively. The proposed model CO2 sequester 545 mL CO2/L PWW, production rate 750 mL CH4 g-VS L PWW/h, and CH4 yield was 4.85 L CH4 g-VS L PWW at 4.5:15 of ZnO NP g-VS L PWW. The kinetic analysis indicated that the modified Gompertz model best fitted the actual evolution of methane yields, as evidenced by the low root mean square prediction error (RMSPE) as well as high correlation difference between (Diff.%) the predicted and actual values. The parameters analyses were highlighted that the PWW digestion with ZnO NP substantially enhanced the hydrolysis rate (khyd), methanogenesis potential (fd), lag phase time h (λ), and methane production rate (Rm) of PWW. The evolution of soluble metabolites, utilization of ZnO NP and carbohydrates were also improved by co-fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

PWW:

Petroleum wastewater

VS:

Volatile solids

COD:

Chemical oxygen demand (g/L)

Alk:

Alkalinity

BOD:

Biochemical oxygen demand (mg/L)

D:

Dilution rate, 1/HRT (day_1)

L:

Liter

NH3-N:

Ammonia nitrogen (mg/L)

O&G:

Oil and grease (mg/L)

OLR:

Organic loading rate (kg/m3/day)

S:

Substrate concentration in the reactor (mg/L)

S1:

Influent substrate concentration (mg/L)

S2:

Effluent substrate concentration (mg/L)

SCOD:

Soluble chemical oxygen demand (mg/L)

SRT:

Solid retention time (day)

SS:

Suspended solid (mg/L)

t :

Time (day)

MLSS:

Mixed liquor suspended sludge (mg/L)

SVI:

Sludge volume index (mL/L)

TN:

Total nitrogen (mg/L)

TS:

Total solid (mg/L)

TVS:

Total volatile solid (mg/L)

UASFF:

Upflow anaerobic sludge fixed film

V:

Volume reactor (L)

VFA:

Volatile fatty acid (mg/L)

TC:

Total carbon

VSS:

Volatile suspended solid (mg/L)

SSV:

Sludge settling velocity (m/h)

SMA:

Specific methanogenic activity

Y :

measured methane yield (L/g CODadded)

f d :

methane potential (mL g COD L POMEadded)

Diff.%:

Difference between

R m :

Methane production rate (mL/g COD/h)

k hyd :

Hydrolysis rate (g COD/day)

n :

Shape factor

λ :

Lag phase time (h)

S.E.E:

Standard error of estimate

RMSE:

Root mean square prediction error

References

  1. Wake, H. (2005). Oil refineries: a review of their ecological impacts on the aquatic environment. Estuarine, Coastal and Shelf Science, 62(1-2), 131–140.

    Article  CAS  Google Scholar 

  2. Salehi, E., Madaeni, S. S., Shamsabadi, A. A., & Laki, S. (2014). Applicability of ceramic membrane filters in pretreatment of coke-contaminated petrochemical wastewater: economic feasibility study. Ceramics International, 40(3), 4805–4810.

    Article  CAS  Google Scholar 

  3. Kesavan, P. L., & Victor, J. (2005). Partial identifiably of parameters in Monod kinetics and statistical analysis of residuals. Biochemical Engineering Journal, 24(2), 95–104.

    Article  CAS  Google Scholar 

  4. Benali, M., Gerbaud, V., & Hemati, M. (2009). Effect of operating conditions and physico–chemical properties on the wet granulation kinetics in high shear mixer. Powder Technology, 190(1-2), 160.

    Article  CAS  Google Scholar 

  5. Ahmad, A., & O-Aljasser, A. (2013). Anaerobic nitrogen, sulfide, and carbon removal in anaerobic granular bed reactor. Environmental Progress. https://doi.org/10.1002/ep.11882.

  6. Guo-Ping, S., Han-Qing, Y., & Xiao-Yan, L. (2008). Stability of sludge flocs under shear conditions. Biochemical Engineering Journal, 38, 302.

    Article  Google Scholar 

  7. Chitu, T. M., Oulahna, D., & Hemati, M. (2011). Wet granulation in laboratory-scale high shear mixers: effect of chopper presence, design and impeller speed. Powder Technology, 206(1–2), 34–43.

    Article  CAS  Google Scholar 

  8. Ahmad, A. (2014). A novel application of red mud-iron on granulation and treatment of palm oil mill effluent using upflow anaerobic sludge blanket reactor. Environmental Technology, 35(21), 2718–2726. https://doi.org/10.1080/09593330.2014.919034.

    Article  CAS  PubMed  Google Scholar 

  9. De Lucas, A., Rodriguez, L., Villaserior, J., & Fernandez, F. J. (2005). Biodegradation kinetics of stored wastewater substrates by mixed microbial culture. Biochemical Engineering Journal, 26(2-3), 191–197.

    Article  Google Scholar 

  10. Ahmad, A., & Wahid, Z. A. (2014). Immobilized cement kiln dust enhances biomass and neutralizing of palm oil mill effluent for biogas production. Environmental Progress, 34(3), 736–743. https://doi.org/10.1002/ep.12057.

    Article  CAS  Google Scholar 

  11. Lombi, E., Donner, E., Tavakkoli, E., Turney, T. W., Naidu, R., Miller, B. W., & Scheckel, K. G. (2012). Fate of zinc oxide nanoparticles during anaerobic digestion of wastewater and post-treatment processing of sewage sludge. Environmental Science & Technology, 46(16), 9089–9096.

    Article  CAS  Google Scholar 

  12. Ahmad, A., & Ghufran, R. (2014). Evaluation of the bio-kinetics of cement kiln dust in an upflow anaerobic sludge blanket reactor for treatment of palm oil mill effluent as a function of hydraulic retention time. Separation and Purification Technology, 133, 129–137.

    Article  CAS  Google Scholar 

  13. Ahmad, A., Ghufran, R., & Wahid, Z. A. (2011a). Role of calcium oxide in sludge granulation and methanogenesis for the treatment of palm oil mill effluent using UASB reactor. Journal of Hazardous Materials, 198, 40–48.

    Article  CAS  Google Scholar 

  14. Vlyssides, A., Barampouti, E. M., & Mai, S. (2008). Determination of granule size distribution in a UASB reactor. Journal of Environmental Management, 86(4), 660–664.

    Article  CAS  Google Scholar 

  15. Shariati, S. R. P., Bonakdarpour, B., Zare, N., & Ashtiani, F. Z. (2011). The effect of hydraulic retention time on the performance and fouling characteristics of membrane sequencing batch reactors used for the treatment of synthetic petroleum refinery wastewater. Bioresource Technology, 102(17), 7692–7699.

    Article  CAS  Google Scholar 

  16. Wang, G., Dai, X., Zhang, D., He, Q., Dong, B., Li, N., & Ye, N. (2018). Two-phase high solid anaerobic digestion with dewatered sludge: improved volatile solid degradation and specific methane generation by temperature and pH regulation. Bioresource Technology, 259, 253–258.

    Article  CAS  Google Scholar 

  17. Mu, H., Chen, Y., & Xiao, N. (2011). Effects of metal oxide nanoparticles (TiO2, Al2O3, SiO2 and ZnO) on waste activated sludge anaerobic digestion. Bioresource Technology, 102(22), 10305–10311.

    Article  CAS  Google Scholar 

  18. Ahmad, A. (2018). Process evaluation for petroleum wastewater co-digestion with rye grass to enhance methane production. Waste and Biomass Valorization, 1–11. https://doi.org/10.1007/s12649-018-0473-9.

    Article  Google Scholar 

  19. Zamanzadeh, M., Parker, W. J., Verastegui, Y., & Neufeld, J. D. (2013). Biokinetics and bacterial communities of propionate oxidizing bacteria in phased anaerobic sludge digestion systems. Water Research, 47(4), 1558–1569.

    Article  CAS  Google Scholar 

  20. Latif, M. A., Ahmad, A., Ghufran, R., & Wahid, Z. A. (2011a). Integrated application of upflow anaerobic sludge blanket reactor for the treatment of wastewaters. Water Research, 45(16), 4683–4699.

    Article  CAS  Google Scholar 

  21. Kim, J., Lee, S., & Lee, C. (2013). Comparative study of changes in reaction profile and microbial community structure in two anaerobic repeated-batch reactors started up with different seed sludges. Bioresource Technology, 129, 495–505.

    Article  CAS  Google Scholar 

  22. Al-Malack, M. H. (2006). Determination of biokinetic coefficients of an immersed membrane bioreactor. Journal of Membrane Science, 271, 46.

    Article  Google Scholar 

  23. Latif, M. A., Ahmad, A., Ghufran, R., & Wahid, Z. A. (2011b). Effect of temperature and organic loading rate on upflow anaerobic sludge blanket reactor (USBR) by treating liquidized food waste. Environmental Progress, 3, 114.

    Google Scholar 

  24. Zhen, G. Y., Lu, X. Q., Kobayashi, T., Li, Y. Y., Xu, K. Q., & Zhao, Y. C. (2015). Mesophilic anaerobic co-digestion of waste activated sludge and Egeria densa: performance assessment and kinetic analysis. Applied Energy, 148, 78–86.

    Article  CAS  Google Scholar 

  25. Ahmad, A., & Ghufran, R. (2018). Review on industrial wastewater energy sources and carbon emission reduction: towards a clean production. International Journal of Sustainable Engineering. https://doi.org/10.1080/19397038.2018.1423647.

    Article  Google Scholar 

  26. Dai, X., Li, X., Zhang, D., Chen, Y., & Dai, L. (2016). Simultaneous enhancement of methane production and methane content in biogas from waste activated sludge and perennial ryegrass anaerobic co-digestion: the effects of pH and C/N ratio. Bioresource Technology, 216, 323–330.

    Article  CAS  Google Scholar 

  27. Zheng, Y. M., & Yu, H. Q. (2007). Determination of the pore size distribution and porosity of aerobic granules using size-exclusion chromatography. Water Research, 41(1), 39–46.

    Article  CAS  Google Scholar 

  28. Kim, H. W., Nam, J. Y., & Shin, H. S. (2011). A comparison study on the high-rate co-digestion o sewage sludge and food waste using a temperature-phased anaerobic sequencing batch reactor system. Bioresource Technology, 102(2011), 7272–7279.

    Article  CAS  Google Scholar 

  29. Pastor, L., Ruiz, L., Pascual, A., & Ruiz, B. (2013). Co-digestion of used oils and urban landfill leachates with sewage sludge and the effect on the biogas production. Applied Energy, 107(2013), 438–445.

    Article  CAS  Google Scholar 

  30. Nyberg, L., Turco, R. F., & Nies, L. (2008). Assessing the impact of nanomaterials on anaerobic microbial communities. Environmental Science & Technology, 42(6), 1938–1943.

    Article  CAS  Google Scholar 

  31. Dai, X., Li, X., Zhang, D., Chen, Y., & Dai, L. (2016). Simultaneous enhancement of methane production and methane content in biogas from waste activated sludge and perennial ryegrass anaerobic co-digestion: the effects of pH and C/N ratio. Bioresource Technology, 216(2016), 323–330.

    Article  CAS  Google Scholar 

  32. Nizami, A. S., & Jerry, D. (2011). Murphy, Optimizing the operation of a two-phase anaerobic digestion system digesting grass silage. Environmental Science & Technology, 45(17), 7561–7569.

    Article  CAS  Google Scholar 

  33. Gao, D., Liu, L., Liang, H., & Wu, W. M. (2011). Aerobic granular sludge: characterization, mechanism of granulation and application to wastewater treatment. Critical Reviews in Biotechnology, 31(2), 137.

    Article  CAS  Google Scholar 

  34. Chen, J. J. (2010). Biomass to renewable energy processes. Boca Raton London: CRC Press, Taylor & Francis Group.

    Google Scholar 

  35. El-Mashad, H. M. (2013). Kinetics of methane production from the co-digestion of switch grass and Spirulina platensis algae. Bioresource Technology, 132, 305–312.

    Article  CAS  Google Scholar 

  36. Ahmad A (2012) Calcium oxide cement kiln dust for granulation of palm oil mill effluent Patent and Trademark Office, United States Department of Commerce, Washington, DC, USA, Patent No. 20120285884A1.

  37. Mu, H., Zheng, X., Chen, Y., Chen, C., & Liu, K. (2012). Response of anaerobic granular sludge to a shock load of zinc oxide nanoparticles during biological wastewater treatment. Environmental Science & Technology, 46(11), 5997–6003.

    Article  CAS  Google Scholar 

  38. Ahmad, A., Ghufran, R., & Wahid, Z. A. (2011a). Bioenergy from anaerobic degradation of lipids in palm oil mill effluent. Biomass and Bioenergy. Reviews in Environmental Science and Biotechnology, 10, 353.

    Article  CAS  Google Scholar 

  39. Otero-González, L., Jim, A. F., & Sierra-Alvarez, R. (2014). Fate and long-term inhibitory impact of ZnO nanoparticles during high-rate anaerobic wastewater treatment. Journal of Environmental Management, 135, 110–117.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the deanship of scientific research (DSR) at the University of Nizwa (UNIZWA) for this research by the Research Cluster Group Energy, Environment and Sustainable technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ahmad.

Ethics declarations

Competing Interests

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, A. Bioprocess Evaluation of Petroleum Wastewater Treatment with Zinc Oxide Nanoparticle for the Production of Methane Gas: Process Assessment and Modelling. Appl Biochem Biotechnol 190, 851–866 (2020). https://doi.org/10.1007/s12010-019-03137-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03137-4

Keywords

Navigation