Skip to main content
Log in

Development of a Novel Electroactive Cardiac Patch Based on Carbon Nanofibers and Gelatin Encouraging Vascularization

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Tissue engineering makes it possible to fabricate scaffolds that can help the function of defective tissues or even the most complex organs such as the heart. Carbon nanofibers (CNFs), because of their high mechanical strength and electrical properties, can improve the functional coupling of cardiomyocytes and their electrophysiological properties. In this study, electroactive CNF/gelatin (Gel) nanofibrous cardiac patches were prepared by an electrospinning method. Scanning electron microscope (SEM) evaluation of prepared scaffolds showed randomly oriented nanofibers. The electrical conductivity of the CNF/Gel scaffolds was assessed by a four-probe device and was in the semiconducting range (~ 10−5 S/m). The result of an MTT assay confirmed the excellent biocompatibility of electroactive CNF/Gel scaffolds. Also, CNF-containing scaffolds supported cardiomyocyte adhesion and increased expression of the cardiac genes including TrpT-2, Actn4, and Conx43 compared with the non-conductive counterpart. Our findings also confirmed the angiogenic potential of CNF/Gel scaffolds as compatible and electroactive platforms for cardiac tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Schürlein, S., Al Hijailan, R., Weigel, T., Kadari, A., Rücker, C., Edenhofer, F., Walles, H., & Hansmann, J. (2017). Generation of a human cardiac patch based on a reendothelialized biological scaffold (BioVaSc). Advanced Biosystems, 1.

  2. Heusch, G., & Gersh, B. J. (2016). The pathophysiology of acute myocardial infarction and strategies of protection beyond reperfusion: a continual challenge. European Heart Journal, 38, 774–784.

    Google Scholar 

  3. Wang, Q., Yang, H., Bai, A., Jiang, W., Li, X., Wang, X., Mao, Y., Lu, C., Qian, R., & Guo, F. (2016). Functional engineered human cardiac patches prepared from nature’s platform improve heart function after acute myocardial infarction. Biomaterials, 105, 52–65.

    CAS  PubMed  Google Scholar 

  4. Prabhakaran, M. P., Venugopal, J., Kai, D., & Ramakrishna, S. (2011). Biomimetic material strategies for cardiac tissue engineering. Materials Science and Engineering: C, 31(3), 503–513.

    CAS  Google Scholar 

  5. Weinberger, F., Mannhardt, I., & Eschenhagen, T. (2017). Engineering cardiac muscle tissue: a maturating field of research. Circulation Research, 120(9), 1487–1500.

    CAS  PubMed  Google Scholar 

  6. Venugopal, J. R., Prabhakaran, M. P., Mukherjee, S., Ravichandran, R., Dan, K., & Ramakrishna, S. (2012). Biomaterial strategies for alleviation of myocardial infarction. Journal of the Royal Society Interface, 9(66), 1–19.

    CAS  Google Scholar 

  7. Saidi, R., & Kenari, S. H. (2014). Challenges of organ shortage for transplantation: solutions and opportunities. International Journal of Organ Transplantation Medicine, 5, 87.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Schaefer, J. A., Guzman, P. A., Riemenschneider, S. B., Kamp, T. J., & Tranquillo, R. T. (2018). A cardiac patch from aligned microvessel and cardiomyocyte patches. Journal of Tissue Engineering and Regenerative Medicine, 12(2), 546–556.

    CAS  PubMed  Google Scholar 

  9. Baheiraei, N., Gharibi, R., Yeganeh, H., Miragoli, M., Salvarani, N., Di Pasquale, E., & Condorelli, G. (2016). Electroactive polyurethane/siloxane derived from castor oil as a versatile cardiac patch, part I: Synthesis, characterization, and myoblast proliferation and differentiation. Journal of Biomedical Materials Research Part A, 104(3), 775–787.

    CAS  PubMed  Google Scholar 

  10. Prabhakaran, M. P., Kai, D., Ghasemi-Mobarakeh, L., & Ramakrishna, S. (2011). Electrospun biocomposite nanofibrous patch for cardiac tissue engineering. Biomedical Materials, 6(5), 055001.

    PubMed  Google Scholar 

  11. Kitsara, M., Agbulut, O., Kontziampasis, D., Chen, Y., & Menasché, P. (2017). Fibers for hearts: a critical review on electrospinning for cardiac tissue engineering. Acta Biomaterialia, 48, 20–40.

    CAS  PubMed  Google Scholar 

  12. Ketabchi, N., Naghibzadeh, M., Adabi, M., Esnaashari, S. S., & Faridi-Majidi, R. (2017). Preparation and optimization of chitosan/polyethylene oxide nanofiber diameter using artificial neural networks. Neural Computing and Applications, 28(11), 3131–3143.

    Google Scholar 

  13. Chow, L. W. (2018). Electrospinning functionalized polymers for use as tissue engineering scaffolds (pp. 27–39). Springer.

  14. Dozois, M. D., Bahlmann, L. C., Zilberman, Y., & Tang, X. S. (2017). Carbon nanomaterial-enhanced scaffolds for the creation of cardiac tissue constructs: a new frontier in cardiac tissue engineering. Carbon, 120, 338–349.

    CAS  Google Scholar 

  15. Naghibzadeh, M., Firoozi, S., Nodoushan, F. S., Adabi, M., Khoradmehr, A., Fesahat, F., Esnaashari, S. S., Khosravani, M., Tavakol, S., & Pazoki-Toroudi, H. (2018). Application of electrospun gelatin nanofibers in tissue engineering. Biointerface Research in Applied Chemistry, 8, 3048–3052.

    CAS  Google Scholar 

  16. Gnavi, S., Blasio, L., Tonda-Turo, C., Mancardi, A., Primo, L., Ciardelli, G., Gambarotta, G., Geuna, S., & Perroteau, I. (2017). Gelatin-based hydrogel for vascular endothelial growth factor release in peripheral nerve tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 11(2), 459–470.

    CAS  PubMed  Google Scholar 

  17. Echave, M. C., S Burgo, L., Pedraz, J. L., & Orive, G. (2017). Gelatin as biomaterial for tissue engineering. Current Pharmaceutical Design, 23, 3567–3584.

    CAS  PubMed  Google Scholar 

  18. Chan, Y.-C., Ting, S., Lee, Y.-K., Ng, K.-M., Zhang, J., Chen, Z., Siu, C.-W., Oh, S. K., & Tse, H.-F. (2013). Electrical stimulation promotes maturation of cardiomyocytes derived from human embryonic stem cells. Journal of Cardiovascular Translational Research, 6(6), 989–999.

    PubMed  Google Scholar 

  19. Tandon, N., Cannizzaro, C., Chao, P.-H. G., Maidhof, R., Marsano, A., Au, H. T. H., Radisic, M., & Vunjak-Novakovic, G. (2009). Electrical stimulation systems for cardiac tissue engineering. Nature Protocols, 4(2), 155–173.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kankala, R. K., Zhu, K., Sun, X.-N., Liu, C.-G., Wang, S.-B., & Chen, A.-Z. (2018). Cardiac tissue engineering on the nanoscale. ACS Biomaterials Science & Engineering, 4(3), 800–818.

    CAS  Google Scholar 

  21. Agyemang, F. O., Tomboc, G. M., Kwofie, S., & Kim, H. (2017). Electrospun carbon nanofiber-carbon nanotubes coated polyaniline composites with improved electrochemical properties for supercapacitors. Electrochimica Acta.

  22. Samadian, H., Zakariaee, S. S., Adabi, M., Mobasheri, H., Azami, M., & Faridi-Majidi, R. (2016). Effective parameters on conductivity of mineralized carbon nanofibers: an investigation using artificial neural networks. RSC Advances, 6(113), 111908–111918.

    CAS  Google Scholar 

  23. Chen, X., Wu, Y., Ranjan, V. D., & Zhang, Y. (2018). Three-dimensional electrical conductive scaffold from biomaterial-based carbon microfiber sponge with bioinspired coating for cell proliferation and differentiation. Carbon, 134, 174–182.

    CAS  Google Scholar 

  24. El-Aziz, A. A., El Backly, R. M., Taha, N. A., El-Maghraby, A., & Kandil, S. H. (2017). Preparation and characterization of carbon nanofibrous/hydroxyapatite sheets for bone tissue engineering. Materials Science and Engineering: C, 76, 1188–1195.

    Google Scholar 

  25. Stout, D. A., Basu, B., & Webster, T. J. (2011). Poly (lactic–co-glycolic acid): carbon nanofiber composites for myocardial tissue engineering applications. Acta Biomaterialia, 7(8), 3101–3112.

    CAS  PubMed  Google Scholar 

  26. Martins, A. M., Eng, G., Caridade, S. G., Mano, J. O. F., Reis, R. L., & Vunjak-Novakovic, G. (2014). Electrically conductive chitosan/carbon scaffolds for cardiac tissue engineering. Biomacromolecules, 15(2), 635–643.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Adabi, M., Saber, R., Naghibzadeh, M., Faridbod, F., & Faridi-Majidi, R. (2015). Parameters affecting carbon nanofiber electrodes for measurement of cathodic current in electrochemical sensors: an investigation using artificial neural network. RSC Advances, 5(99), 81243–81252.

    CAS  Google Scholar 

  28. Adabi, M., Saber, R., Faridi-Majidi, R., & Faridbod, F. (2015). Performance of electrodes synthesized with polyacrylonitrile-based carbon nanofibers for application in electrochemical sensors and biosensors. Materials Science and Engineering: C, 48, 673–678.

    CAS  Google Scholar 

  29. Bidez, P. R., Li, S., MacDiarmid, A. G., Venancio, E. C., Wei, Y., & Lelkes, P. I. (2006). Polyaniline, an electroactive polymer, supports adhesion and proliferation of cardiac myoblasts. Journal of Biomaterials Science, Polymer Edition, 17(1-2), 199–212.

    CAS  Google Scholar 

  30. Baheiraei, N., Yeganeh, H., Ai, J., Gharibi, R., Azami, M., & Faghihi, F. (2014). Synthesis, characterization and antioxidant activity of a novel electroactive and biodegradable polyurethane for cardiac tissue engineering application. Materials Science and Engineering: C, 44, 24–37.

    CAS  Google Scholar 

  31. Baheiraei, N., Yeganeh, H., Ai, J., Gharibi, R., Ebrahimi-Barough, S., Azami, M., Vahdat, S., & Baharvand, H. (2015). Preparation of a porous conductive scaffold from aniline pentamer-modified polyurethane/PCL blend for cardiac tissue engineering. Journal of Biomedical Materials Research Part A, 103(10), 3179–3187.

    CAS  PubMed  Google Scholar 

  32. Khorramirouz, R., Go, J. L., Noble, C., Jana, S., Maxson, E., Lerman, A., & Young, M. D. (2018). A novel surgical technique for a rat subcutaneous implantation of a tissue engineered scaffold. Acta Histochemica, 120(3), 282–291.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Jalise, S. Z., Baheiraei, N., & Bagheri, F. (2018). The effects of strontium incorporation on a novel gelatin/bioactive glass bone graft: In vitro and in vivo characterization. Ceramics International, 44(12), 14217–14227.

    Google Scholar 

  34. Cuesta, A., Dhamelincourt, P., Laureyns, J., Martinez-Alonso, A., & Tascon, J. M. (1998). Comparative performance of X-ray diffraction and Raman microprobe techniques for the study of carbon materials. Journal of Materials Chemistry, 8(12), 2875–2879.

    CAS  Google Scholar 

  35. Lee, J.-W., Serna, F., Nickels, J., & Schmidt, C. E. (2006). Carboxylic acid-functionalized conductive polypyrrole as a bioactive platform for cell adhesion. Biomacromolecules, 7(6), 1692–1695.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Dai, X., Huang, Y.-C., Leichner, J., Nair, M., Lin, W.-C., & Li, C.-Z. (2015). Peptide modified polymer poly (glycerol-dodecanedioate co-fumarate) for efficient control of motor neuron differentiation. Biomedical Materials, 10(6), 065013.

    PubMed  Google Scholar 

  37. Kai, D., Prabhakaran, M. P., Jin, G., & Ramakrishna, S. (2011). Guided orientation of cardiomyocytes on electrospun aligned nanofibers for cardiac tissue engineering. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 98, 379–386.

    Google Scholar 

  38. Tresoldi, C., Peneda Pacheco, D. P., Formenti, E., Gentilini, R., Mantero, S., & Petrini, P. (2017). Alginate/gelatin hydrogels to coat porous tubular scaffolds for vascular tissue engineering. European Cells & Materials, 33.

  39. Martinelli, V., Cellot, G., Toma, F. M., Long, C. S., Caldwell, J. H., Zentilin, L., Giacca, M., Turco, A., Prato, M., & Ballerini, L. (2013). Carbon nanotubes instruct physiological growth and functionally mature syncytia: nongenetic engineering of cardiac myocytes. ACS Nano, 7(7), 5746–5756.

    CAS  PubMed  Google Scholar 

  40. Martinelli, V., Cellot, G., Toma, F. M., Long, C. S., Caldwell, J. H., Zentilin, L., Giacca, M., Turco, A., Prato, M., & Ballerini, L. (2012). Carbon nanotubes promote growth and spontaneous electrical activity in cultured cardiac myocytes. Nano Letters, 12(4), 1831–1838.

    CAS  PubMed  Google Scholar 

  41. Kumar, R., Meyyappan, M., & Koehne, J. E. The electrochemical society (p. 2502).

  42. Baker, S. R., Banerjee, S., Bonin, K., & Guthold, M. (2016). Determining the mechanical properties of electrospun poly-ε-caprolactone (PCL) nanofibers using AFM and a novel fiber anchoring technique. Materials Science and Engineering: C, 59, 203–212.

    CAS  Google Scholar 

  43. Omens, J. H. (1998). Stress and strain as regulators of myocardial growth. Progress in Biophysics and Molecular Biology, 69(2-3), 559–572.

    CAS  PubMed  Google Scholar 

  44. Kotwal, A., & Schmidt, C. E. (2001). Electrical stimulation alters protein adsorption and nerve cell interactions with electrically conducting biomaterials. Biomaterials, 22(10), 1055–1064.

    CAS  PubMed  Google Scholar 

  45. Zhang, X.-R., Hu, X.-Q., Jia, X.-L., Yang, L.-K., Meng, Q.-Y., Shi, Y.-Y., Zhang, Z.-Z., Cai, Q., Ao, Y.-F., & Yang, X.-P. (2016). Cell studies of hybridized carbon nanofibers containing bioactive glass nanoparticles using bone mesenchymal stromal cells. Scientific Reports, 6(1), 38685.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Monteiro, L. M., Vasques-Novoa, F., Ferreira, L., & Nascimento, D. S. (2017). Restoring heart function and electrical integrity: closing the circuit. NPJ Regenerative Medicine, 2(1), 9.

    PubMed  PubMed Central  Google Scholar 

  47. Kharaziha, M., Shin, S. R., Nikkhah, M., Topkaya, S. N., Masoumi, N., Annabi, N., Dokmeci, M. R., & Khademhosseini, A. (2014). Tough and flexible CNT–polymeric hybrid scaffolds for engineering cardiac constructs. Biomaterials, 35(26), 7346–7354.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Pok, S., Vitale, F., Eichmann, S. L., Benavides, O. M., Pasquali, M., & Jacot, J. G. (2014). Biocompatible carbon nanotube–chitosan scaffold matching the electrical conductivity of the heart. ACS Nano, 8(10), 9822–9832.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Shin, S. R., Jung, S. M., Zalabany, M., Kim, K., Zorlutuna, P., Kim, S. B., Nikkhah, M., Khabiry, M., Azize, M., & Kong, J. (2013). Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano, 7(3), 2369–2380.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sun, H., Lü, S., Jiang, X.-X., Li, X., Li, H., Lin, Q., Mou, Y., Zhao, Y., Han, Y., & Zhou, J. (2015). Carbon nanotubes enhance intercalated disc assembly in cardiac myocytes via the β1-integrin-mediated signaling pathway. Biomaterials, 55, 84–95.

    CAS  PubMed  Google Scholar 

  51. Zhou, J., Chen, J., Sun, H., Qiu, X., Mou, Y., Liu, Z., Zhao, Y., Li, X., Han, Y., & Duan, C. (2014). Engineering the heart: evaluation of conductive nanomaterials for improving implant integration and cardiac function. Scientific Reports, 4, 3733.

    PubMed  PubMed Central  Google Scholar 

  52. Naskar, D., Ghosh, A. K., Mandal, M., Das, P., Nandi, S. K., & Kundu, S. C. (2017). Dual growth factor loaded nonmulberry silk fibroin/carbon nanofiber composite 3D scaffolds for in vitro and in vivo bone regeneration. Biomaterials, 136, 67–85.

    CAS  PubMed  Google Scholar 

  53. Blazewicz, M. (2001). Carbon materials in the treatment of soft and hard tissue injuries. European Cells & Materials, 2, 21–29.

    CAS  Google Scholar 

  54. Jell, G., Verdejo, R., Safinia, L., Shaffer, M. S., Stevens, M. M., & Bismarck, A. (2008). Carbon nanotube-enhanced polyurethane scaffolds fabricated by thermally induced phase separation. Journal of Materials Chemistry, 18(16), 1865–1872.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nafiseh Baheiraei.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Human Participants and/or Animals

Animal experiments were performed according to the ethics committee guidelines for laboratory animals approved by the Ethics Committee of Tarbiat Modares University, Iran (IR.TMU.REC.1395.440).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehrabi, A., Baheiraei, N., Adabi, M. et al. Development of a Novel Electroactive Cardiac Patch Based on Carbon Nanofibers and Gelatin Encouraging Vascularization. Appl Biochem Biotechnol 190, 931–948 (2020). https://doi.org/10.1007/s12010-019-03135-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03135-6

Keywords

Navigation