Skip to main content
Log in

Corn Straw Residue: a Strategy for Lipase Immobilization

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This work aims to study the immobilization of Candida rugosa lipase (CRL) onto corn straw residue. For this purpose, chemical, morphological, and textural characteristics of the corn straw; immobilization process by adsorption; and immobilized enzyme activity and storage stability were evaluated. The corn straw presented isoelectric point of 7.0, surface with hydroxyl bands being favorable to the immobilization process. An irregular surface was also observed with fibers and pores, which are mesoporous and macroporous, characteristics that demonstrate efficiency in mass transfer mechanisms. Upon immobilization, it was observed that adsorption velocity is proportional to the square of the available adsorption sites (pseudo-second-order), and that the immobilization occurs in monolayers (Langmuir isotherm). The adsorption process was favorable and considered as a chemical adsorption mechanism. After immobilization, the optimum temperature increased, the optimum pH reduced, and the affinity of the biocatalyst for the substrate decreased. Corn straw derivative demonstrated good thermal stability. Regarding storage stability, there was approximately 12% loss of activity after 60 days of storage at 4 °C. Considering that no treatment was applied to the corn straw, this result is satisfactory and shows good affinity between this support and CRL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aarathy, M., Saravanan, P., Gowthaman, M. K., Rose, C., & Kamini, N. R. (2014). Enzymatic transesterification for production of biodiesel using yeast lipases: An overview. Chemical Engineering Research and Design, 92(8), 1591–1601.

    Article  Google Scholar 

  2. Katchalski-Katzir, E., & Kraemer, D. M. (2000). Eupergit® C, a carrier for immobilization of enzymes of industrial potential. Journal of Molecular Catalysis B: Enzymatic, 10(1-3), 157–176.

    Article  CAS  Google Scholar 

  3. Reguly, J. C. (2000). Biotecnologia dos Processos Fermentativos (1st ed.). Recife: Universitário.

    Google Scholar 

  4. Mendes, A. A., Giordano, R. C., Giordano, R. L. C., & Castro, H. F. (2011). Immobilization and stabilization of microbial lipases by multipoint covalent attachment on aldehyde-resin affinity: Application of the biocatalysts in biodiesel synthesis. Journal of Molecular Catalysis B: Enzymatic, 68(1), 109–115.

    Article  CAS  Google Scholar 

  5. Costa-Silva, T. A., Carvalho, A. K. F., Souza, C. R. F., De Castro, H. F., Said, S., & Oliveira, W. P. (2016). Enzymatic Synthesis of Biodiesel Using Immobilized Lipase on a Non-commercial Support. Energy & Fuels, 30(6), 4820–4824.

    Article  CAS  Google Scholar 

  6. Lv, J., Liu, X., Yuan, X., Deng, Y., Wu, Z., Wang, Y., Fan, M., & Xu, H. (2013). Preparation and properties of adsorption material from corn stalks core when used for enzyme immobilization and the subsequent activities of the adsorbed enzymes. Industrial Crops and Products, 50, 787–796.

    Article  CAS  Google Scholar 

  7. Regalbuto, J. R., & Robles, J. (2004). Final report - Summer Program. Chicago: University of Illinois.

    Google Scholar 

  8. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248–254.

    Article  CAS  Google Scholar 

  9. Yener, J., Kopac, T., Dogu, G., & Dogu, T. (2006). Adsorption of Basic Yellow 28 from aqueous solutions with clinoptilolite and amberlite. Journal of Colloid and Interface Science, 294(2), 255–264.

    Article  CAS  Google Scholar 

  10. Blanchard, G., Maunaye, M., & Martim, G. (1984). Removal of heavy metals from waters by means of natural zeolites. Water Research, 18(12), 1501–1507.

    Article  CAS  Google Scholar 

  11. Langmuir, I. (1916). Journal of the American Chemical Society, 252, 2221–2295.

    Article  Google Scholar 

  12. Freundlich, H. (1909). Kolloid-Zeitschrift (Vol. 3, pp. 212–220).

    Google Scholar 

  13. HAN, R., Zhang, J., Zou, W., Shi, J., & Liu, H. (2005). Equilibrium biosorption isotherm for lead ion on chaff. Journal of Hazardous Materials, 125(1-3), 266–271.

    Article  CAS  Google Scholar 

  14. Bon, E. P. S., Ferrara, M. A., & Corvo, M. L. (2008). Enzimas em biotecnologia: produção, aplicações e mercado (1st ed.). Rio de Janeiro: Interciência.

    Google Scholar 

  15. Soares, C. M. F., De Castro, H. F., De Moraes, F. F., & Zanin, G. M. (1999). Biotechnology and Applied Biochemistry, 77, 745–757.

    Article  Google Scholar 

  16. Milhomem, K. P. (2018). Ms thesis. Catalão: Universidade Federal de Goiás.

    Google Scholar 

  17. Zivkovic, L. T. I., Zivkovic, L. S., Babic, B. M., Kokunesoski, M. J., Jokic, B. M., & Karadzic, I. M. (2015). Immobilization of Candida rugosa lipase by adsorption onto biosafe meso/macroporous silica and zirconia. Biochemical Engineering Journal, 93, 73–83.

    Article  Google Scholar 

  18. Pavia, D. L., Lampman, G. M., Kriz, G. S., & Vyvyan, J. R. (2010). Introdução à espectroscopia (2nd ed.). São Paulo: Cengage Learning.

    Google Scholar 

  19. Wen, J. L., Sun, Z. J., Sun, Y. C., Sun, S. N., Xu, F., & Sun, R. C. (2010). Structural Characterization of Alkali-Extractable Lignin Fractions from Bamboo. Journal of Biobased Materials and Bioenergy, 4(4), 408–425.

    Article  CAS  Google Scholar 

  20. IUPAC. (1976). Pure and Applied Chemistry, 46, 71–90.

    Article  Google Scholar 

  21. Schmal, M. (2011). Cinética e reatores: aplicação na Engenharia Química (1st ed.). Rio de Janeiro: Synergia.

    Google Scholar 

  22. Maron, S. H., & Prutton, C. F. (2005). Fundamentos de Fisico-química (1st ed.). México: Limusa.

    Google Scholar 

  23. Castellan, G. W. (1986). Fundamentos de físico-química, 1st ed. Rio de Janeiro: LTC.

    Google Scholar 

  24. Fogler, H. S. (2009). Elementos de engenharia das reações químicas (4th ed.). Rio de Janeiro: LTC.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to UFPR-Palotina for the surface and pore size analyses.

Funding

This paper was financially supported by CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renata Deda Mendonca Ferreira.

Ethics declarations

There is no research involving human participants and/or animals.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, R.D.M., Brackmann, R., Pereira, E.B. et al. Corn Straw Residue: a Strategy for Lipase Immobilization. Appl Biochem Biotechnol 190, 839–850 (2020). https://doi.org/10.1007/s12010-019-03132-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03132-9

Keywords

Navigation