Skip to main content

Advertisement

Log in

Anticancer Activities of Cu(II) Complex-Schiff Base and Low-Frequency Electromagnetic Fields and the Interaction Between Cu(II) Complex-Schiff Base with Bovine Serum Albumin by Spectroscopy

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Cancer is the consequence of abnormal cell proliferation, which leads to the formation of abnormal mass. In this study, we aimed to determine the anticancer properties of Cu(II)-Schiff base complex and low-frequency electromagnetic field, and the interaction between BSA and Cu(II) complex. Firstly, Schiff base of the Cu(II) complex in the N,N′-dipyridoxyl(1,2 diaminobenzene) was originally synthesized. Following, the breast cancer was transplanted with the TUBO cells in vivo. Then, treatment of the cancerous mice was done by low-frequency electromagnetic field and the Cu(II)-Schiff base complex. In this project, antiproliferative activity on breast cancer cells was tested by TUBO cells using MTT assay and apoptosis properties were studied by flow cytometry. The interaction between the Cu(II)-Schiff base complex and bovine serum albumin (BSA) was checked by fluorescence and UV-vis absorbance spectroscopy. Tumor tissue investigation demonstrated that the low-frequency electromagnetic field and Cu(II)-Schiff base complex induce apoptosis and inhibit tumor growth. MTT results unveiled a cytotoxic impact on breast cancer cells. Flow cytometry analysis demonstrates that the anticancer effect of Cu(II)-Schiff base complex on breast cancer cells (MCF7) was associated with the cell cycle arrest. The results of fluorescence spectra and UV-vis absorption spectra showed that the conformation of bovine serum albumin has been changed in the presence of Cu(II)-Schiff base complex. Cu(II)-Schiff base complex and low-frequency electromagnetic field have anticancer properties. The spectroscopy method indicates the binding between Cu(II)-Schiff base complex and BSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. DeVita, V. T., Jr., Lawrence, T. S., Rosenberg, S. A., & Cancer, P. P. O. (2015). 10e primer. Lippincott Williams & Wilkins.

  2. Wong, R. S. (2011). Apoptosis in cancer: from pathogenesis to treatment. Journal of Experimental & Clinical Cancer Research, 30(1), 87.

    Article  CAS  Google Scholar 

  3. Bargou, R. C., Daniel, P. T., Mapara, M. Y., Bommert, K., Wagener, C., Kallinich, B., Royer, H. D., & Dörken, B. (1995). Expression of the bcl-2 gene family in normal and malignant breast tissue: low bax-α expression in tumor cells correlates with resistance towards apoptosis. International Journal of Cancer, 60(6), 854–859.

    Article  CAS  PubMed  Google Scholar 

  4. Kerr, J. F., Winterford, C. M., & Harmon, B. V. (1994). Apoptosis. Its significance in cancer and cancer therapy. Cancer, 73(8), 2013–2026.

    Article  CAS  PubMed  Google Scholar 

  5. Strasser, A., O'Connor, L., & Dixit, V. M. (2000). Apoptosis signaling. Annual Review of Biochemistry, 69(1), 217–245.

    Article  CAS  PubMed  Google Scholar 

  6. Carter, D. C., & Ho, J. X. (1994). Structure of serum albumin. Advances in Protein Chemistry, 45: Elsevier, 153–203.

    Article  CAS  PubMed  Google Scholar 

  7. Guo, X.-J., Sun, X.-D., & Xu, S.-K. (2009). Spectroscopic investigation of the interaction between riboflavin and bovine serum albumin. Journal of Molecular Structure, 931(1-3), 55–59.

    Article  CAS  Google Scholar 

  8. He, X. M., & Carter, D. C. (1992). Atomic structure and chemistry of human serum albumin. Nature, 358(6383), 209–215.

    Article  CAS  PubMed  Google Scholar 

  9. Tian, J., Liu, J., Hu, Z., & Chen, X. (2005). Interaction of wogonin with bovine serum albumin. Bioorganic & Medicinal Chemistry, 13(12), 4124–4129.

    Article  CAS  Google Scholar 

  10. Tian, J., Liu, J., Zhang, J., Hu, Z., & Chen, X. (2003). Fluorescence studies on the interactions of barbaloin with bovine serum albumin. Chemical & Pharmaceutical Bulletin, 51(5), 579–582.

    Article  CAS  Google Scholar 

  11. Wang, Y.-P., Wei, Y.-L., & Dong, C. (2006). Study on the interaction of 3, 3-bis (4-hydroxy-1-naphthyl)-phthalide with bovine serum albumin by fluorescence spectroscopy. Journal of Photochemistry and Photobiology, A: Chemistry, 177(1), 6–11.

    Article  CAS  Google Scholar 

  12. Bi, S., Song, D., Tian, Y., Zhou, X., Liu, Z., & Zhang, H. (2005). Molecular spectroscopic study on the interaction of tetracyclines with serum albumins. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy., 61(4), 629–636.

    Article  CAS  Google Scholar 

  13. Hu, Y.-J., Liu, Y., Zhang, L.-X., Zhao, R.-M., & Qu, S.-S. (2005). Studies of interaction between colchicine and bovine serum albumin by fluorescence quenching method. Journal of Molecular Structure, 750(1-3), 174–178.

    Article  CAS  Google Scholar 

  14. Shaikh, S., Seetharamappa, J., Ashoka, S., & Kandagal, P. (2007). A study of the interaction between bromopyrogallol red and bovine serum albumin by spectroscopic methods. Dyes and Pigments, 73(2), 211–216.

    Article  CAS  Google Scholar 

  15. Cozzi, P. G. (2004). Metal–Salen Schiff base complexes in catalysis: practical aspects. Chemical Society Reviews, 33(7), 410–421.

    Article  CAS  PubMed  Google Scholar 

  16. Chohan, Z. H., & Sherazi, S. K. (1999). Synthesis and characterisation of some Co (II), Cu (II) and Ni (II) complexes with nicotinoylhydrazine derivatives and the biological role of metals and anions (SO4 2-, NO3−, CzO4 2-and CH3CO− 2) on the antibacterial properties. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 29(1), 105–118.

    Article  CAS  Google Scholar 

  17. Dharmaraj, N., Viswanathamurthi, P., & Natarajan, K. (2001). Ruthenium (II) complexes containing bidentate Schiff bases and their antifungal activity. Transition Metal Chemistry, 26(1-2), 105–109.

    Article  CAS  Google Scholar 

  18. Jayabalakrishnan, C., & Natarajan, K. (2001). Synthesis, characterization, and biological activities of ruthenium (II) carbonyl complexes containing bifunctional tridentate Schiff bases. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 31(6), 983–995.

    Article  CAS  Google Scholar 

  19. Mashaly, M. M. (2004). Heterobinuclear and heterotrinuclear complexes of oxorhenium (V) with Cu (II), Ni (II), Fe (III), UO2 (VI) and Th (IV) in the solid state. Journal of Coordination Chemistry, 57(3), 199–215.

    Article  CAS  Google Scholar 

  20. Solomon, E. I., & Lowery, M. D. (1993). Electronic structure contributions to function in bioinorganic chemistry. Science, 259(5101), 1575–1582.

    Article  CAS  PubMed  Google Scholar 

  21. Gerdemann, C., Eicken, C., & Krebs, B. (2002). The crystal structure of catechol oxidase: new insight into the function of type-3 copper proteins. Accounts of Chemical Research, 35(3), 183–191.

    Article  CAS  PubMed  Google Scholar 

  22. Tümer, M., Köksal, H., Sener, M. K., & Serin, S. (1999). Antimicrobial activity studies of the binuclear metal complexes derived from tridentate Schiff base ligands. Transition Metal Chemistry, 24(4), 414–420.

    Article  Google Scholar 

  23. Chakraborty, A., Kumar, P., Ghosh, K., & Roy, P. (2010). Evaluation of a Schiff base copper complex compound as potent anticancer molecule with multiple targets of action. European Journal of Pharmacology, 647(1-3), 1–12.

    Article  CAS  PubMed  Google Scholar 

  24. Repacholi, M. H., & Greenebaum, B. (1999). Interaction of static and extremely low frequency electric and magnetic fields with living systems: health effects and research needs. Bioelectromagnetics., 20(3), 133–160.

    Article  CAS  PubMed  Google Scholar 

  25. Evan, G. I., & Vousden, K. H. (2001). Proliferation, cell cycle and apoptosis in cancer. Nature., 411(6835), 342–348.

    Article  CAS  PubMed  Google Scholar 

  26. Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. cell., 100(1), 57–70.

    Article  CAS  PubMed  Google Scholar 

  27. LaCasse, E. C., Baird, S., Korneluk, R. G., & MacKenzie, A. E. (1998). The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene, 17(25), 3247–3259.

    Article  PubMed  Google Scholar 

  28. Toozandejani, T., Beyramabadi, S. A., Chegini, H., Khashi, M., Morsali, A., & Pordel, M. (2017). Synthesis, experimental and theoretical characterization of a Mn (II) complex of N, N′-dipyridoxyl (1, 2-diaminobenzene). Journal of Molecular Structure, 1127, 15–22.

    Article  CAS  Google Scholar 

  29. Ma, Z.-Y., Qiao, X., Xie, C.-Z., Shao, J., Xu, J.-Y., Qiang, Z.-Y., & Lou, J. S. (2012). Activities of a novel Schiff base copper (II) complex on growth inhibition and apoptosis induction toward MCF-7 human breast cancer cells via mitochondrial pathway. Journal of Inorganic Biochemistry, 117, 1–9.

    Article  CAS  PubMed  Google Scholar 

  30. Easmon, J., Pürstinger, G., Heinisch, G., Roth, T., Fiebig, H. H., Holzer, W., Jäger, W., Jenny, M., & Hofmann, J. (2001). Synthesis, cytotoxicity, and antitumor activity of copper (II) and iron (II) complexes of 4 N-azabicyclo [3.2. 2] nonane thiosemicarbazones derived from acyl diazines. Journal of Medicinal Chemistry, 44(13), 2164–2171.

    Article  CAS  PubMed  Google Scholar 

  31. Liang, F., Wu, C., Lin, H., Li, T., Gao, D., Li, Z., Wei, J., Zheng, C., & Sun, M. (2003). Copper complex of hydroxyl-substituted triazamacrocyclic ligand and its antitumor activity. Bioorganic & Medicinal Chemistry Letters, 13(15), 2469–2472.

    Article  CAS  Google Scholar 

  32. Filomeni, G., Cerchiaro, G., Ferreira, A. M. D. C., De Martino, A., Pedersen, J. Z., Rotilio, G., et al. (2007). Pro-apoptotic activity of novel Isatin-Schiff base copper (II) complexes depends on oxidative stress induction and organelle-selective damage. The Journal of Biological Chemistry, 282(16), 12010–12021.

    Article  CAS  PubMed  Google Scholar 

  33. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. cell., 144(5), 646–674.

    Article  CAS  PubMed  Google Scholar 

  34. Hajrezaie, M., Golbabapour, S., Hassandarvish, P., Gwaram, N. S., Hadi, A. H. A., Ali, H. M., et al. (2012). Acute toxicity and gastroprotection studies of a new schiff base derived copper (II) complex against ethanol-induced acute gastric lesions in rats. PLoS One, 7(12), e51537.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Jayashree, B., Kaur, M., & Pai, A. (2012). Synthesis, characterisation, antioxidant and anticancer evaluation of novel Schiff’s bases of 2-quinolones. Elixir Online Journal, 52, 11317.

    Google Scholar 

  36. Zhang, X., Bi, C., Fan, Y., Cui, Q., Chen, D., Xiao, Y., et al. (2008). Induction of tumor cell apoptosis by taurine Schiff base copper complex is associated with the inhibition of proteasomal activity. International Journal of Molecular Medicine, 22(5), 677–682.

    CAS  PubMed  Google Scholar 

  37. Liang, C., Xia, J., Lei, D., Li, X., Yao, Q., & Gao, J. (2014). Synthesis, in vitro and in vivo antitumor activity of symmetrical bis-Schiff base derivatives of isatin. European Journal of Medicinal Chemistry, 74, 742–750.

    Article  CAS  PubMed  Google Scholar 

  38. Duff, B., Thangella, V. R., Creaven, B. S., Walsh, M., & Egan, D. A. (2012). Anti-cancer activity and mutagenic potential of novel copper (II) quinolinone Schiff base complexes in hepatocarcinoma cells. European Journal of Pharmacology, 689(1-3), 45–55.

    Article  CAS  PubMed  Google Scholar 

  39. Ruiz, G. M., Pastor, V. J., De La Pena, L., Gil, C. L., & Martínez, M. M. (1999). Growth modification of human colon adenocarcinoma cells exposed to a low-frequency electromagnetic field. Journal of Physiology and Biochemistry, 55(2), 79–83.

    Google Scholar 

  40. Tofani, S., Barone, D., Cintorino, M., de Santi, M. M., Ferrara, A., Orlassino, R., Ossola, P., Peroglio, F., Rolfo, K., & Ronchetto, F. (2001). Static and ELF magnetic fields induce tumor growth inhibition and apoptosis. Bioelectromagnetics., 22(6), 419–428.

    Article  CAS  PubMed  Google Scholar 

  41. Williams CD, Markov MS, Hardman WE, Cameron IL. Therapeutic electromagnetic field effects on angiogenesis and tumor growth. 2001.

  42. Barbault, A., Costa, F. P., Bottger, B., Munden, R. F., Bomholt, F., Kuster, N., & Pasche, B. (2009). Amplitude-modulated electromagnetic fields for the treatment of cancer: discovery of tumor-specific frequencies and assessment of a novel therapeutic approach. Journal of Experimental & Clinical Cancer Research, 28(1), 51.

    Article  Google Scholar 

  43. Filipovic, N., Djukic, T., Radovic, M., Cvetkovic, D., Curcic, M., Markovic, S., et al. (2014). Electromagnetic field investigation on different cancer cell lines. Cancer Cell International, 14(1), 84.

    Article  CAS  Google Scholar 

  44. Sunil, D., Isloor, A. M., Shetty, P., Nayak, P. G., & Pai, K. (2013). In vivo anticancer and histopathology studies of Schiff bases on Ehrlich ascitic carcinoma cells: 1st cancer update. Arabian Journal of Chemistry, 6(1), 25–33.

    Article  CAS  Google Scholar 

  45. Fleisig, H., & Wong, J. (2012). Measuring cell cycle progression kinetics with metabolic labeling and flow cytometry. Journal of Visualized Experiments, (63), e4045.

  46. Roccio, M., Schmitter, D., Knobloch, M., Okawa, Y., Sage, D., & Lutolf, M. P. (2013). Predicting stem cell fate changes by differential cell cycle progression patterns. Development, 140(2), 459–470.

    Article  CAS  PubMed  Google Scholar 

  47. Volotskova, O., Hawley, T. S., Stepp, M. A., & Keidar, M. (2012). Targeting the cancer cell cycle by cold atmospheric plasma. Scientific Reports, 2(1), 636.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Yazdanparast, R., & Sadeghi, H. (2004). Nucleic acid synthesis in cancerous cells under the effect of gnidilatimonoein from Daphne mucronata. Life Sciences, 74(15), 1869–1876.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by Islamic Azad University, Mashhad, Iran, and therefore is appreciated by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Neamati.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadamani, S., Neamati, A., Homayouni-Tabrizi, M. et al. Anticancer Activities of Cu(II) Complex-Schiff Base and Low-Frequency Electromagnetic Fields and the Interaction Between Cu(II) Complex-Schiff Base with Bovine Serum Albumin by Spectroscopy. Appl Biochem Biotechnol 190, 997–1009 (2020). https://doi.org/10.1007/s12010-019-03118-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03118-7

Keywords

Navigation