Effects of His-tag on Catalytic Activity and Enantioselectivity of Recombinant Transaminases

  • Lijun Meng
  • Yayun Liu
  • Xinjian Yin
  • Haisheng Zhou
  • Jianping Wu
  • Mianbin Wu
  • Lirong YangEmail author


Recombinant proteins were often expressed with His-tag to simplify the purification process. Among them, transaminase was mostly expressed with fusion tags and widely used in the production of numerous amino moieties. However, the existence of the His-tag has been reported to affect various properties of different recombinant enzymes, while the effect on transaminase was rarely studied. In this paper, we investigated the effect of His-tag on transaminase based on the various activities of 4-aminobutyrate-2-oxoglutarate transaminase (GabT) when it was expressed in vector pETDuet-1. We found that His-tag did not affect the enantioselectivity, but decreased the catalytic activity to different extents according to its existence and location. Native GabT maintained the highest catalytic activity; GabT with C-terminal His-tag showed slightly lower activity than native GabT but about 2.2-fold higher than GabT with N-terminal His-tag. Besides, other fusion tags like T7-tag and S-tag inserted between N-His-tag and GabT can relieve the decreasing effect of His-tag on GabT activity. Furthermore, whole cell catalytic activity of several transaminases was improved by deleting the N-terminal His-tag. This study provided a strategy for the efficient expression of recombinant transaminase with improved catalytic activity and might attract attention to the effect of His-tag on other enzymatic properties.


His-tag Transaminase Catalytic activity Protein expression l-Phosphinothricin 


Funding information

This work was supported by the National Natural Science Foundation of China (No. 21476199).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12010_2019_3117_MOESM1_ESM.doc (109 kb)
ESM 1 (DOC 109 kb)


  1. 1.
    Slabu, I., Galman, J. L., Lloyd, R. C., & Turner, N. J. (2017). Discovery, engineering, and synthetic application of transaminase biocatalysts. ACS Catalysis, 7(12), 8263–8284.CrossRefGoogle Scholar
  2. 2.
    Dawood, A. W. H., de Souza, R. O. M. A., & Bornscheuer, U. T. (2018). Asymmetric synthesis of chiral halogenated amines using amine transaminases. ChemCatChem, 10(5), 951–955.CrossRefGoogle Scholar
  3. 3.
    Steffen-Munsberg, F., Vickers, C., Kohls, H., Land, H., Mallin, H., Nobili, A., Skalden, L., van den Bergh, T., Joosten, H. J., Berglund, P., Hohne, M., & Bornscheuer, U. T. (2015). Bioinformatic analysis of a PLP-dependent enzyme superfamily suitable for biocatalytic applications. Biotechnology Advances, 33(5), 566–604.CrossRefGoogle Scholar
  4. 4.
    Kelly, S. A., Pohle, S., Wharry, S., Mix, S., Allen, C. C. R., Moody, T. S., & Gilmore, B. F. (2017). Application of ω-transaminases in the pharmaceutical industry. Chemical Reviews, 118(1), 349–367.CrossRefGoogle Scholar
  5. 5.
    Guo, F., & Berglund, P. (2017). Transaminase biocatalysis: optimization and application. Green Chemistry, 19(2), 333–360.CrossRefGoogle Scholar
  6. 6.
    Mathew, S., & Yun, H. (2012). ω-Transaminases for the production of optically pure amines and unnatural amino acids. ACS Catal, 2(6), 993–1001.CrossRefGoogle Scholar
  7. 7.
    Fuchs, M., Farnberger, J. E., & Kroutil, W. (2015). The industrial age of biocatalytic transamination. European Journal of Organic Chemistry, 2015(32), 6965–6982.CrossRefGoogle Scholar
  8. 8.
    Savile, C. K., Janey, J. M., Mundorff, E. C., Moore, J. C., Tam, S., Jarvis, W. R., Colbeck, J. C., Krebber, A., Fleitz, F. J., Brands, J., Devine, P. N., Huisman, G. W., & Hughes, G. J. (2010). Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science, 329(5989), 305–309.CrossRefGoogle Scholar
  9. 9.
    Patil, M. D., Grogan, G., Bommarius, A., & Yun, H. (2018). Recent advances in ω-transaminase-mediated biocatalysis for the enantioselective synthesis of chiral Amines. Catalysts, 8(254), 1–25.Google Scholar
  10. 10.
    Höhne, M., & Bornscheuer, U. T. (2012). In K. Drauz, H. Gröger, & O. May (Eds.), Enzyme Catalysis in Organic Synthesis, Chapter 19: application of Transaminases. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.Google Scholar
  11. 11.
    Deng, A., & Boxer, S. G. (2018). Structural insight into the photochemistry of split green fluorescent proteins: a unique role for a His-Tag. Journal of the American Chemical Society, 140(1), 375–381.CrossRefGoogle Scholar
  12. 12.
    Carson, M., Johnson, D. H., McDonald, H., Brouillette, C., & Delucas, L. J. (2007). His-tag impact on structure. Acta Crystallographica, Section D: Biological Crystallography, 63(3), 295–301.CrossRefGoogle Scholar
  13. 13.
    Porath, J., Carlsson, J. A. N., Olsson, I., & Belfrage, G. (1975). Metal chelate affinity chromatography, a new approach to protein fractionation. Nature, 258(5536), 598–599.CrossRefGoogle Scholar
  14. 14.
    Structural Genomics, C., China Structural Genomics, C., Northeast Structural Genomics, C., Graslund, S., Nordlund, P., Weigelt, J., Hallberg, B. M., Bray, J., Gileadi, O., Knapp, S., Oppermann, U., Arrowsmith, C., Hui, R., Ming, J., dhe-Paganon, S., Park, H. W., Savchenko, A., Yee, A., Edwards, A., Vincentelli, R., Cambillau, C., Kim, R., Kim, S. H., Rao, Z., Shi, Y., Terwilliger, T. C., Kim, C. Y., Hung, L. W., Waldo, G. S., Peleg, Y., Albeck, S., Unger, T., Dym, O., Prilusky, J., Sussman, J. L., Stevens, R. C., Lesley, S. A., Wilson, I. A., Joachimiak, A., Collart, F., Dementieva, I., Donnelly, M. I., Eschenfeldt, W. H., Kim, Y., Stols, L., Wu, R., Zhou, M., Burley, S. K., Emtage, J. S., Sauder, J. M., Thompson, D., Bain, K., Luz, J., Gheyi, T., Zhang, F., Atwell, S., Almo, S. C., Bonanno, J. B., Fiser, A., Swaminathan, S., Studier, F. W., Chance, M. R., Sali, A., Acton, T. B., Xiao, R., Zhao, L., Ma, L. C., Hunt, J. F., Tong, L., Cunningham, K., Inouye, M., Anderson, S., Janjua, H., Shastry, R., Ho, C. K., Wang, D., Wang, H., Jiang, M., Montelione, G. T., Stuart, D. I., Owens, R. J., Daenke, S., Schutz, A., Heinemann, U., Yokoyama, S., Bussow, K., & Gunsalus, K. C. (2008). Protein production and purification. Nature Methods, 5(2), 135–146.CrossRefGoogle Scholar
  15. 15.
    Booth, W. T., Schlachter, C. R., Pote, S., Ussin, N., Mank, N. J., Klapper, V., Offermann, L. R., Tang, C., Hurlburt, B. K., & Chruszcz, M. (2018). Impact of an N-terminal polyhistidine tag on protein thermal stability. ACS Omega, 3(1), 760–768.CrossRefGoogle Scholar
  16. 16.
    Terpe, K. (2003). Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Applied Microbiology and Biotechnology, 60(5), 523–533.CrossRefGoogle Scholar
  17. 17.
    Wood, D. W. (2014). New trends and affinity tag designs for recombinant protein purification. Current Opinion in Structural Biology, 26, 54–61.CrossRefGoogle Scholar
  18. 18.
    Esposito, D., & Chatterjee, D. K. (2006). Enhancement of soluble protein expression through the use of fusion tags. Current Opinion in Biotechnology, 17(4), 353–358.CrossRefGoogle Scholar
  19. 19.
    Araujo, A. P., Oliva, G., Henrique-Silva, F., Garratt, R. C., Caceres, O., & Beltramini, L. M. (2000). Influence of the histidine tail on the structure and activity of recombinant chlorocatechol 1,2-dioxygenase. Biochemical and Biophysical Research Communications, 272(2), 480–484.CrossRefGoogle Scholar
  20. 20.
    Bucher, M. H., Evdokimov, A. G., & Waugh, D. S. (2002). Differential effects of short affinity tags on the crystallization of Pyrococcus furiosus maltodextrin-binding protein. Acta Crystallographica, Section D: Biological Crystallography, 58(3), 392–397.CrossRefGoogle Scholar
  21. 21.
    Zhao, D., & Huang, Z. (2016). Effect of His-tag on expression, purification, and structure of Zinc finger protein, ZNF191(243-368). Bioinorganic Chemistry and Applications, 2016, 8206854.CrossRefGoogle Scholar
  22. 22.
    Guo, F. M., Wu, J. P., Yang, L. R., & Xu, G. (2015). Soluble and functional expression of a recombinant enantioselective amidase from Klebsiella oxytoca KCTC 1686 in Escherichia coli and its biochemical characterization. Process Biochemistry, 50(8), 1264–1271.CrossRefGoogle Scholar
  23. 23.
    Yeon, Y. J., Park, H. J., Park, H.-Y., & Yoo, Y. J. (2014). Effect of His-tag location on the catalytic activity of 3-hydroxybutyrate dehydrogenase. Biotechnology and Bioprocess Engineering, 19(5), 798–802.CrossRefGoogle Scholar
  24. 24.
    Sabaty, M., Grosse, S., Adryanczyk, G., Boiry, S., Biaso, F., Arnoux, P., & Pignol, D. (2013). Detrimental effect of the 6 His C-terminal tag on YedY enzymatic activity and influence of the TAT signal sequence on YedY synthesis. BMC Biochemistry, 14(1), 28–39.CrossRefGoogle Scholar
  25. 25.
    Panek, A., Pietrow, O., Filipkowski, P., & Synowiecki, J. (2013). Effects of the polyhistidine tag on kinetics and other properties of trehalose synthase from Deinococcus geothermalis. Acta Biochimica Polonica, 60(2), 163–166.CrossRefGoogle Scholar
  26. 26.
    Sayari, A., Mosbah, H., Verger, R., & Gargouri, Y. (2007). The N-terminal His-tag affects the enantioselectivity of staphylococcal lipases: a monolayer study. Journal of Colloid and Interface Science, 313(1), 261–267.CrossRefGoogle Scholar
  27. 27.
    Horchani, H., Ouertani, S., Gargouri, Y., & Sayari, A. (2009). The N-terminal His-tag and the recombination process affect the biochemical properties of Staphylococcus aureus lipase produced in Escherichia coli. Journal of Molecular Catalysis B: Enzymatic, 61(3-4), 194–201.CrossRefGoogle Scholar
  28. 28.
    Mutti, F. G., Fuchs, C. S., Pressnitz, D., Turrini, N. G., Sattler, J. H., Lerchner, A., Skerra, A., & Kroutil, W. (2012). Amination of ketones by employing two new (S)-selective ω-transaminases and the His-tagged ω-TA from Vibrio fluvialis. European Journal of Organic Chemistry, 2012(5), 1003–1007.CrossRefGoogle Scholar
  29. 29.
    Stekhanova, T. N., Rakitin, A. L., Mardanov, A. V., Bezsudnova, E. Y., & Popov, V. O. (2017). A Novel highly thermostable branched-chain amino acid aminotransferase from the crenarchaeon Vulcanisaeta moutnovskia. Enzyme and Microbial Technology, 96, 127–134.CrossRefGoogle Scholar
  30. 30.
    Gao, S., Su, Y., Zhao, L., Li, G., & Zheng, G. (2017). Characterization of a (R)-selective amine transaminase from Fusarium oxysporum. Process Biochemistry, 63, 130–136.CrossRefGoogle Scholar
  31. 31.
    Mathew, S., Nadarajan, S. P., Chung, T., Park, H. H., & Yun, H. (2016). Biochemical characterization of thermostable omega-transaminase from Sphaerobacter thermophilus and its application for producing aromatic beta- and gamma-amino acids. Enzyme and Microbial Technology, 87-88, 52–60.CrossRefGoogle Scholar
  32. 32.
    Chen, Y., Yi, D., Jiang, S., & Wei, D. (2016). Identification of novel thermostable taurine-pyruvate transaminase from Geobacillus thermodenitrificans for chiral amine synthesis. Applied Microbiology and Biotechnology, 100(7), 3101–3111.CrossRefGoogle Scholar
  33. 33.
    Zou, L., Zhao, H., Wang, D., Wang, M., Zhang, C., & Xiao, F. (2014). Expression and purification of a functional recombinant aspartate aminotransferase (AST) from Escherichia coli. Journal of Microbiology and Biotechnology, 24(7), 998–1003.CrossRefGoogle Scholar
  34. 34.
    Meng, L. J., Liu, Y. Y., Zhou, H. S., Yin, X. J., Wu, J. P., Wu, M. B., Xu, G., & Yang, L. R. (2018). Driving transamination irreversible by decomposing byproduct α-ketoglutarate into ethylene using ethylene-forming enzyme. Catalysis Letters, 148(11), 3309–3314.CrossRefGoogle Scholar
  35. 35.
    Nobuto Minowa, N. N., Masaaki Itomi. (2010) Method for producing phosphorus-containing alpha-keto acid. US Patent 0,063,313.Google Scholar
  36. 36.
    Yin, X., Wu, J., & Yang, L. (2018). Efficient reductive amination process for enantioselective synthesis of L-phosphinothricin applying engineered glutamate dehydrogenase. Applied Microbiology and Biotechnology, 102(10), 4425–4433.CrossRefGoogle Scholar
  37. 37.
    Zheng, L., Baumann, U., & Reymond, J. L. (2004). An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Research, 32(14), e115.CrossRefGoogle Scholar
  38. 38.
    Vivek, K., Mutalik, J. C. G., Cambray, G., Lam, C., Christoffersen, M. J., Quynh-Anh Mai, A. B. T., Paull, M., Keasling, J. D., Arkin, A. P., & Endy, D. (2013). Precise and reliable gene expression via standard transcription and translation initiation elements. Nature Methods, 10(4), 354–369.CrossRefGoogle Scholar
  39. 39.
    Espah Borujeni, A., Channarasappa, A. S., & Salis, H. M. (2014). Translation rate is controlled by coupled trade-offs between site accessibility, selective RNA unfolding and sliding at upstream standby sites. Nucleic Acids Research, 42(4), 2646–2659.CrossRefGoogle Scholar
  40. 40.
    Espah Borujeni, A., & Salis, H. M. (2016). Translation initiation is controlled by RNA folding kinetics via a riobosome drafting mechanism. Journal of the American Chemical Society, 138, 7016–7023.CrossRefGoogle Scholar
  41. 41.
    Cheong, D. E., Ko, K. C., Han, Y., Jeon, H. G., Sung, B. H., Kim, G. J., Choi, J. H., & Song, J. J. (2015). Enhancing functional expression of heterologous proteins through random substitution of genetic codes in the 5' coding region. Biotechnology and Bioengineering, 112(4), 822–826.CrossRefGoogle Scholar
  42. 42.
    Liu, W., Peterson, P. E., Langston, J. A., Jin, X., Zhou, X., Fisher, A. J., & Toney, M. D. (2005). Kinetic and crystallographic analysis of active site mutants of Escherichia coli gamma-aminobutyrate aminotransferase. Biochemistry, 44(8), 2982–2992.CrossRefGoogle Scholar
  43. 43.
    Liu, W., Peterson, P. E., Carter, R. J., Zhou, X., Langston, J. A., Fisher, A. J., & Toney, M. D. (2004). Crystal structures of unbound and aminooxyacetate-bound Escherichia coli gamma-aminobutyrate aminotransferase. Biochemistry, 43(34), 10896–10905.CrossRefGoogle Scholar
  44. 44.
    Wilding, M., Scott, C., & Warden, A. C. (2018). Computer-guided surface engineering for enzyme improvement. Scientific Reports, 8(1), 11998.CrossRefGoogle Scholar
  45. 45.
    Yu, X., Wang, X., & Engel, P. C. (2014). The specificity and kinetic mechanism of branched-chain amino acid aminotransferase from Escherichia coli studied with a new improved coupled assay procedure and the enzyme's potential for biocatalysis. FEBS Journal, 281(1), 391–400.CrossRefGoogle Scholar
  46. 46.
    Slabu, I., Galman, J. L., Weise, N. J., Lloyd, R. C., & Turner, N. J. (2016). Putrescine transaminases for the synthesis of saturated nitrogen heterocycles from polyamines. ChemCatChem, 8(6), 1038–1042.CrossRefGoogle Scholar
  47. 47.
    Barber, J. E., Damry, A. M., Calderini, G. F., Walton, C. J., & Chica, R. A. (2014). Continuous colorimetric screening assay for detection of D-amino acid aminotransferase mutants displaying altered substrate specificity. Analytical Biochemistry, 463, 23–30.CrossRefGoogle Scholar
  48. 48.
    Kaulmann, U., Smithies, K., Smith, M. E. B., Hailes, H. C., & Ward, J. M. (2007). Substrate spectrum of ω-transaminase from Chromobacterium violaceum DSM30191 and its potential for biocatalysis. Enzyme and Microbial Technology, 41(5), 628–637.CrossRefGoogle Scholar
  49. 49.
    Park, E. S., & Shin, J. S. (2013). omega-Transaminase from Ochrobactrum anthropi is devoid of substrate and product inhibitions. Applied and Environmental Microbiology, 79(13), 4141–4144.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Biological Engineering, College of Chemical and Biological EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations