Skip to main content
Log in

High-Throughput Screening of T7 Promoter Mutants for Soluble Expression of Cephalosporin C Acylase in E. coli

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Cephalosporin C acylase (CCA) is the key enzyme in the production of 7-aminocephalosporanic acid (7-ACA) via a one-step enzymatic process. To improve the soluble expression level of CCA in recombinant Escherichia coli at elevated temperatures, a library of T7 promoter mutants was created by site-saturation mutagenesis, and a series of mutated promoters were subsequently screened. Green fluorescent protein (GFP) was fused to the C-terminus of CCA to facilitate library screening, and the expression of the CCA and GFP fusion proteins was investigated under the control of the T7 promoter. Twenty-four mutants were selected by detecting the fluorescence intensity of colonies on agar plates to form a library with different expression levels. The enzyme activities of the mutants were positively correlated with their fluorescence intensities. The highest enzyme activity among these mutant promoters was 1.3-fold higher than the enzyme activity resulting from the wild-type promoter when the cells were cultured at 32 °C for 16 h. In addition, the transcription and expression levels of several typical promoters were discussed, and the effects of GFP fusion on the enzyme activity of CCA were investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Marjan De Mey, J.M., Lequeux, G.J. (2007). Construction and model-based analysis of a promoter library for E. coli: an indispensable tool for metabolic engineering. BMC Biotechnology, 7.

  2. Hammer, K., Mijakovic, I., & Jensen, P. R. (2006). Synthetic promoter libraries--tuning of gene expression. Trends in Biotechnology, 24(2), 53–55.

    Article  CAS  PubMed  Google Scholar 

  3. Sriram Kosuria, D. B. G., Cambray, G., Mutalikd, V. K., & Gaog, Y. (2013). Composability of regulatory sequences controlling transcription and translation in Escherichia coli. PNAS, 110(34), 14024–14029.

    Article  Google Scholar 

  4. Nevoigt, E., Fischer, C., Mucha, O., Matthäus, F., Stahl, U., & Stephanopoulos, G. (2007). Engineering promoter regulation. Biotechnology and Bioengineering, 96(3), 550–558.

    Article  CAS  PubMed  Google Scholar 

  5. Alper, H., Fischer, C., Nevoigt, E., & Stephanopoulos, G. (2005). Tuning genetic control through promoter engineering. Proceedings of the National Academy of Sciences of the United States of America, 102(36), 12678–12683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Alper, H. (2006). Chemical engineering. Ann Arbor: Massachusetts Institute of Technology.

    Google Scholar 

  7. Nevoigt, E., Kohnke, J., Fischer, C. R., Alper, H., Stahl, U., & Stephanopoulos, G. (2006). Engineering of promoter replacement cassettes for fine-tuning of gene expression in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 72(8), 5266–5273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhu, S., Yang, Y., Zhao, G., & Jiang, W. (2003). A rapid and specific method to screen environmental microorganisms for cephalosporin acylase activity. Journal of Microbiological Methods, 54(1), 131–135.

    Article  CAS  PubMed  Google Scholar 

  9. Aramori, I., Fukagawa, M., Tsumura, M., Iwami, M., Ono, H., Kojo, H., Kohsaka, M., Ueda, Y., & Imanaka, H. (1991). Cloning and nucleotide sequencing of a novel 7 beta-(4-carboxybutanamido)cephalosporanic acid acylase gene of Bacillus laterosporus and its expression in Escherichia coli and Bacillus subtilis. Journal of Bacteriology, 173(24), 7848–7855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Aramori, I., Fukagawa, M., Tsumura, M., Iwami, M., Yokota, Y., Kojo, H., Kohsaka, M., Ueda, Y., & Imanaka, H. (1991). Isolation of soil strains producing new cephalosporin acylases. Journal of Fermentation and Bioengineering, 72(4), 227–231.

    Article  CAS  Google Scholar 

  11. Aramori, I., Fukagawa, M., Tsumura, M., Iwami, M., Isogai, T., Ono, H., Ishitani, Y., Kojo, H., Kohsaka, M., & Ueda, Y. (1991). Cloning and nucleotide sequencing of new glutaryl 7-ACA and cephalosporin C acylase genes from Pseudomonas strains. Journal of Fermentation and Bioengineering, 72(4), 232–243.

    Article  CAS  Google Scholar 

  12. Kim, D.-W., & Yoon, K.-H. (2001). Cloning and high expression of glutaryl 7-aminocephalosporanic acid acylase gene from Pseudomonas diminuta. Biotechnology Letters, 23(13), 1067–1071.

    Article  CAS  Google Scholar 

  13. Xiao, Y., Huo, X., Qian, Y., Zhang, Y., Chen, G., Ouyang, P., & Lin, Z. (2014). Engineering of a CPC acylase using a facile pH indicator assay. Journal of Industrial Microbiology & Biotechnology, 41(11), 1617–1625.

    Article  CAS  Google Scholar 

  14. Conti, G., Pollegioni, L., Molla, G., & Rosini, E. (2014). Strategic manipulation of an industrial biocatalyst--evolution of a cephalosporin C acylase. The FEBS Journal, 281(10), 2443–2455.

    Article  CAS  PubMed  Google Scholar 

  15. Schumann, W., & Ferreira, L. C. S. (2004). Production of recombinant proteins in Escherichia coli. Genetics and Molecular Biology, 27(3), 442–453.

    Article  CAS  Google Scholar 

  16. Zhu, X., Luo, H., Chang, Y., Su, H., Li, Q., Yu, H., & Shen, Z. (2011). Characteristic of immobilized cephalosporin C acylase and its application in one-step enzymatic conversion of cephalosporin C to 7-aminocephalosporanic acid. World Journal of Microbiology and Biotechnology, 27(4), 823–829.

    Article  CAS  Google Scholar 

  17. Rud, I., Jensen, P. R., Naterstad, K., & Axelsson, L. (2006). A synthetic promoter library for constitutive gene expression in Lactobacillus plantarum. Microbiology, 152(4), 1011–1019.

    Article  CAS  PubMed  Google Scholar 

  18. Pavan, S., Hols, P., Delcour, J., Geoffroy, M. C., Grangette, C., Kleerebezem, M., & Mercenier, A. (2000). Adaptation of the nisin-controlled expression system in Lactobacillus plantarum: a tool to study in vivo biological effects. Applied and Environmental Microbiology, 66(10), 4427–4432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Axelsson, L. L. G., & Naterstad, K. (2003). Development of an inducible gene expression system for Lactobacillus sakei. Letters in Applied Microbiology, 37(2), 115–120.

    Article  CAS  PubMed  Google Scholar 

  20. Jia, B., & Jeon, C. O. (2016). High-throughput recombinant protein expression in Escherichia coli: current status and future perspectives. Open Biology, 6(8), 160196.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang, W., Li, Y., Wang, Y., Shi, C., Li, C., Li, Q., & Linhardt, R. J. (2018). Bacteriophage T7 transcription system: an enabling tool in synthetic biology. Biotechnology Advances, 36(8), 2129–2137.

    Article  CAS  PubMed  Google Scholar 

  22. Studier, F. W. (2005). Protein production by auto-induction in high-density shaking cultures. Protein Expression and Purification, 41(1), 207–234.

    Article  CAS  PubMed  Google Scholar 

  23. Wang, Y., Yu, H., Song, W., An, M., Zhang, J., Luo, H., & Shen, Z. (2012). Overexpression of synthesized cephalosporin C acylase containing mutations in the substrate transport tunnel. Journal of Bioscience and Bioengineering, 113(1), 36–41.

    Article  CAS  PubMed  Google Scholar 

  24. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods, 25(4), 402–408.

    CAS  PubMed  Google Scholar 

  25. Chen, H., Wu, B., Zhang, T., Jia, J., Lu, J., Chen, Z., Ni, Z., & Tan, T. (2017). Effect of linker length and flexibility on the Clostridium thermocellum esterase displayed on Bacillus subtilis spores. Applied Biochemistry and Biotechnology, 182(1), 168–180.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, J., Yu, H., Wang, Y., Luo, H., & Shen, Z. (2014). Determination of the second autoproteolytic cleavage site of cephalosporin C acylase and the effect of deleting its flanking residues in the α-C-terminal region. Journal of Biotechnology, 184, 138–145.

    Article  CAS  PubMed  Google Scholar 

  27. Nuc, P., & Nuc, K. (2006). Recombinant protein production in Escherichia coli. Postepy Biochemii, 52, 448–456.

    CAS  PubMed  Google Scholar 

  28. Bansal, M., Kumar, A., & Yella, V. R. (2014). Role of DNA sequence based structural features of promoters in transcription initiation and gene expression. Current Opinion in Structural Biology, 25, 77–85.

    Article  CAS  PubMed  Google Scholar 

  29. Steitz, T. A. (2009). The structural changes of T7 RNA polymerase from transcription initiation to elongation. Current Opinion in Structural Biology, 19(6), 683–690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dimitri, A., Goodenough, A., Guengerich, F., Broyde, S., & Scicchitano, D. (2008). Transcription processing at 1,N2-ethenoguanine by human RNA polymerase II and bacteriophage T7 RNA polymerase. Journal of Molecular Biology, 375(2), 353–366.

    Article  CAS  PubMed  Google Scholar 

  31. Li, M., Wang, J., Geng, Y., Li, Y., Qian, W., Liang, Q., & Qi, Q. (2012). A strategy of gene overexpression based on tandem repetitive promoters in Escherichia coli. Microbial Cell Factories, 11, 1–10.

    Article  CAS  Google Scholar 

  32. Hoffmann, F., Heuvel, J. V. D., Zidek, N., & Rinas, U. (2004). Minimizing inclusion body formation during recombinant protein production in Escherichia coli at bench and pilot plant scale. Enzyme and Microbial Technology, 34(3-4), 235–241.

    Article  CAS  Google Scholar 

  33. Waldo, G. S. (2003). Improving protein folding efficiency by directed evolution using the GFP folding reporter. Methods in Molecular Biology, 230, 343–359.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Shandong Lukang Pharmaceutical Co., Ltd. for the generous supply of CPC and 7-ACA. The authors thank Prof. Stephanopoulos for the gift of the plasmid pZE-GFP.

Funding

This work was supported by the National Natural Science Foundation of China (21276023; 21476025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Luo.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 379 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, Z., Luo, H., Li, J. et al. High-Throughput Screening of T7 Promoter Mutants for Soluble Expression of Cephalosporin C Acylase in E. coli. Appl Biochem Biotechnol 190, 293–304 (2020). https://doi.org/10.1007/s12010-019-03113-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03113-y

Keywords

Navigation