Skip to main content
Log in

The Deoxymiroestrol and Isoflavonoid Production and Their Elicitation of Cell Suspension Cultures of Pueraria candollei var. mirifica: from Shake Flask to Bioreactor

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

To address the high demand for Pueraria candollei var. mirifica (PM) used as the active ingredient in health products and its difficulty to cultivate in the field, the growth and production of deoxymiroestrol (DME) and isoflavonoid (ISF) phytoestrogens in PM cell suspensions were studied. In a 125-mL shake flask, the cell suspension produced DME [78.7 ± 8.79–116 ± 18.2 μg/g dry weight (DW)] and ISF (140 ± 6.83–548 ± 18.5 μg/g DW), which are the predominant ISF glycosides. While ISF aglycones accumulated in the PM cell suspension cultured in the airlift bioreactor. The DME content was increased to 976 ± 79.6 μg/g DW when the PM cell suspension was cultured in the 5-L scale bioreactor. The production of DME and ISF was enhanced by elicitors including methyl jasmonate (MJ), yeast extract (YE), and chitosan (CHI). MJ produced the highest induction of DME accumulation, while ISF accumulation was the highest with YE treatment. Analysis of catalase activity implied that the elicitors enhanced ROS production, which resulted in the enhancement of DME and ISF production and accumulation in PM cell suspension cultures. PM cell suspension culture is a promising source of beneficial PM phytoestrogens that exhibit bioactivity that may useful for the treatment of menopausal symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Malaivijitnond, S. (2012). Medical applications of phytoestrogens from the Thai herb Pueraria mirifica. Frontiers in Medicine, 6(1), 8–21.

    Article  Google Scholar 

  2. Cherdshewasart, W., & Sutjit, W. (2008). Correlation of antioxidant activity and major isoflavonoid contents of the phytoestrogen-rich Pueraria mirifica and Pueraria lobata tubers. Phytomedicine, 15(1-2), 38–43.

    Article  CAS  Google Scholar 

  3. Chattuwatthana, T., & Okello, E. (2015). Anti-collagenase, anti-elastase and antioxidant activities of Pueraria candollei var. mirifica root extract and Coccinia grandis fruit juice extract: an In vitro study. European Journal of Medicinal Plants, 5(4), 318–327.

    Article  Google Scholar 

  4. Thurston, R. C., & Joffe, H. (2011). Vasomotor symptoms and menopause: findings from the study of Women’s Health across the Nation. Obstetrics and Gynecology Clinics of North America, 38(3), 489–501.

    Article  Google Scholar 

  5. Wentzensen, N., & Trabert, B. (2015). Hormone therapy: short-term relief, long-term consequences. Lancet, 385(9980), 1806–1808.

    Article  Google Scholar 

  6. Rossouw, J. E., Anderson, G. L., Prentice, R. L., LaCroix, A. Z., Kooperberg, C., Stefanick, M. L., Jackson, R. D., Beresford, S. A., Howard, B. V., Johnson, K. C., Kotchen, J. M., & Ockene, J. (2002). Risks and benefits of estrogen plus progestin in healthy postmenopausal women principal results from the Women’s Health Initiative randomized controlled trial. JAMA, 288(3), 321–333.

    Article  CAS  Google Scholar 

  7. Cherdshewasart, W., Subtang, S., & Dahlan, W. (2007). Major isoflavonoid contents of the phytoestrogen rich-herb Pueraria mirifica in comparison with Pueraria lobata. Journal of Pharmaceutical and Biomedical Analysis, 43(2), 428–434.

    Article  CAS  Google Scholar 

  8. Yusakul, G., Putalun, W., Udomsin, O., Juengwatanatrakul, T., & Chaichantipyuth, C. (2011). Comparative analysis of the chemical constituents of two varieties of Pueraria candollei. Fitoterapia, 82(2), 203–207.

    Article  CAS  Google Scholar 

  9. Cherdshewasart, W., & Sriwatcharakul, S. (2007). Major isoflavonoid contents of the 1-year-cultivated phytoestrogen-rich herb, Pueraria mirifica. Bioscience, Biotechnology, and Biochemistry, 71(10), 2527–2533.

    Article  CAS  Google Scholar 

  10. Das, K. and Roychoudhury, A. (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science 2.

  11. Mittler, R., Vanderauwera, S., Gollery, M., & Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends in Plant Science, 9(10), 490–498.

    Article  CAS  Google Scholar 

  12. Rani, D., Meelaph, T., Kobtrakul, K., & Vimolmangkang, S. (2018). Optimizing Pueraria candollei var. mirifica cell suspension culture for prolonged maintenance and decreased variation of isoflavonoid from single cell lines. Plant Cell, Tissue and Organ Culture, 134, 433–443.

    Article  CAS  Google Scholar 

  13. Boonsnongcheep, P., Korsangruang, S., Soonthornchareonnon, N., Chintapakorn, Y., Saralamp, P., & Prathanturarug, S. (2010). Growth and isoflavonoid accumulation of Pueraria candollei var. candollei and P. candollei var. mirifica cell suspension cultures. Plant Cell, Tissue and Organ Culture, 101, 119–126.

    Article  CAS  Google Scholar 

  14. Udomsuk, L., Juengwattanatrakul, T., Jarukamjorn, K., & Putalun, W. (2012). Increased miroestrol, deoxymiroestrol and isoflavonoid accumulation in callus and cell suspension cultures of Pueraria candollei var. mirifica. Acta Physiologiae Plantarum, 34(3), 1093–1100.

    Article  CAS  Google Scholar 

  15. Godoy-Hernández, G., & Vázquez-Flota, F. A. (2006). In V. M. Loyola-Vargas & F. Vázquez-Flota (Eds.), In plant cell culture protocols (pp. 51–58). Totowa: Humana Press.

    Google Scholar 

  16. Udomsin, O., Yusakul, G., Kraithong, W., Udomsuk, L., Kitisripanya, T., Juengwatanatrakul, T., & Putalun, W. (2019). Enhanced accumulation of high-value deoxymiroestrol and isoflavonoids using hairy root as a sustainable source of Pueraria candollei var. mirifica. Plant Cell, Tissue and Organ Culture, 136, 141–151.

    Article  CAS  Google Scholar 

  17. Yusakul, G., Udomsin, O., Juengwatanatrakul, T., Tanaka, H., Chaichantipyuth, C., & Putalun, W. (2013). Highly selective and sensitive determination of deoxymiroestrol using a polyclonal antibody-based enzyme-linked immunosorbent assay. Talanta, 114, 73–78.

    Article  CAS  Google Scholar 

  18. Góth, L. (1991). A simple method for determination of serum catalase activity and revision of reference range. Clinica Chimica Acta, 196(2-3), 143–151.

    Article  Google Scholar 

  19. Thanonkeo, S., & Sanha, P. (2006). Production of isoflavones, daidzein and genistein in callus cultures of Pueraria candollei Wall. ex Benth. var. mirifica. Songklanakarin J. Science and Technology, 28, 45–53.

    Google Scholar 

  20. Zhang, C. H., Wu, J. Y., & He, G. Y. (2002). Effects of inoculum size and age on biomass growth and paclitaxel production of elicitor-treated Taxus yunnanensis cell cultures. Applied Microbiology and Biotechnology, 60(4), 396–402.

    Article  CAS  Google Scholar 

  21. Zhao, D. X., Xing, J. M., Li, M. Y., Lu, D. P., & Zhao, Q. (2001). Optimization of growth and jaceosidin production in callus and cell suspension cultures of Saussurea medusa. Plant Cell, Tissue and Organ Culture, 67(3), 227–234.

    Article  CAS  Google Scholar 

  22. Korsangruang, S., Soonthornchareonnon, N., Chintapakorn, Y., Saralamp, P., & Prathanturarug, S. (2010). Effects of abiotic and biotic elicitors on growth and isoflavonoid accumulation in Pueraria candollei var. candollei and P. candollei var. mirifica cell suspension cultures. Plant Cell, Tissue and Organ Culture, 103, 333–342.

    Article  CAS  Google Scholar 

  23. Zimmermann, P., & Zentgraf, U. (2005). The correlation between oxidative stress and leaf senescence during plant development. Cellular & Molecular Biology Letters, 10(3), 515–534.

    CAS  Google Scholar 

  24. Sofo, A., Scopa, A., Nuzzaci, M., & Vitti, A. (2015). Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. International Journal of Molecular Sciences, 16(12), 13561–13578.

    Article  CAS  Google Scholar 

  25. Zhang, L. R., & Xing, D. (2008). Methyl jasmonate induces production of reactive oxygen species and alterations in mitochondrial dynamics that precede photosynthetic dysfunction and subsequent cell death. Plant & Cell Physiology, 49(7), 1092–1111.

    Article  CAS  Google Scholar 

  26. Gholizadeh, A. and Baghban Kohnehrouz, B. (2009) Activation of phenylalanine ammonia lyase as a key component of the antioxidative system of salt-challenged maize leaves. ed.

  27. Jeong, Y. J., An, C. H., Park, S. C., Pyun, J. W., Lee, J., Kim, S. W., Kim, H. S., Kim, H., Jeong, J. C., & Kim, C. Y. (2018). Methyl jasmonate increases isoflavone production in soybean cell cultures by activating structural genes involved in isoflavonoid biosynthesis. Journal of Agricultural and Food Chemistry, 66(16), 4099–4105.

    Article  CAS  Google Scholar 

  28. Kirakosyan, A., Kaufman, P. B., Chang, S. C., Warber, S., Bolling, S., & Vardapetyan, H. (2006). Regulation of isoflavone production in hydroponically grown Pueraria montana (kudzu) by cork pieces, XAD-4, and methyl jasmonate. Plant Cell Reports, 25(12), 1387–1391.

    Article  CAS  Google Scholar 

  29. Zaheer, M., Reddy, V. D., & Giri, C. C. (2016). Enhanced daidzin production from jasmonic and acetyl salicylic acid elicited hairy root cultures of Psoralea corylifolia L. (Fabaceae). Natural Product Research, 30(13), 1542–1547.

    Article  CAS  Google Scholar 

  30. Petrov, V., Hille, J., Mueller-Roeber, B., & Gechev, T. S. (2015). ROS-mediated abiotic stress-induced programmed cell death in plants. Frontiers in Plant Science, 6, 69.

    Article  Google Scholar 

  31. Shinde, A. N., Malpathak, N., & Fulzele, D. P. (2009). Optimized production of isoflavones in cell cultures of Psoralea corylifolia L. using elicitation and precursor feeding. Biotechnology and Bioprocess Engineering, 14(5), 612–618.

    Article  CAS  Google Scholar 

  32. Guo, Z. J., Lamb, C., & Dixon, R. A. (1998). Potentiation of the oxidative burst and isoflavonoid phytoalexin accumulation by serine protease inhibitors. Plant Physiology, 118(4), 1487–1494.

    Article  CAS  Google Scholar 

  33. Pauw, B., van Duijn, B., Kijne, J. W., & Memelink, J. (2004). Activation of the oxidative burst by yeast elicitor in Catharanthus roseus cells occurs independently of the activation of genes involved in alkaloid biosynthesis. Plant Molecular Biology, 55(6), 797–805.

    Article  CAS  Google Scholar 

  34. Chen, H., Seguin, P., Archambault, A., Constan, L., & Jabaji, S. (2009). Gene expression and isoflavone concentrations in soybean sprouts treated with chitosan. Crop Science, 49(1), 224–236.

    Article  CAS  Google Scholar 

  35. Malerba, M., & Cerana, R. (2015). Reactive oxygen and nitrogen species in defense/stress responses activated by chitosan in sycamore cultured cells. International Journal of Molecular Sciences, 16(2), 3019–3034.

    Article  CAS  Google Scholar 

  36. Morant, A. V., Jørgensen, K., Jørgensen, C., Paquette, S. M., Sánchez-Pérez, R., Møller, B. L., & Bak, S. (2008). β-Glucosidases as detonators of plant chemical defense. Phytochemistry, 69(9), 1795–1813.

    Article  CAS  Google Scholar 

  37. Morant, A. V., Bjarnholt, N., Kragh, M. E., Kjærgaard, C. H., Jørgensen, K., Paquette, S. M., Piotrowski, M., Imberty, A., Olsen, C. E., Møller, B. L., & Bak, S. (2008). The beta-glucosidases responsible for bioactivation of hydroxynitrile glucosides in Lotus japonicus. Plant Physiology, 147(3), 1072–1091.

    Article  CAS  Google Scholar 

  38. Chattopadhyay, S., Farkya, S., Srivastava, A. K., & Bisaria, V. S. (2002). Bioprocess considerations for production of secondary metabolites by plant cell suspension cultures. Biotechnology and Bioprocess Engineering, 7(3), 138–149.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Chaiyo Chaichantipyuth at the Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand, for providing authentic DME and KWA.

Funding

This research was financially supported by the Faculty of Pharmaceutical Sciences, Khon Kaen University, Thailand, and The Thailand Research Fund (IRN 61W0005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waraporn Putalun.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 77 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Udomsin, O., Yusakul, G., Kitisripanya, T. et al. The Deoxymiroestrol and Isoflavonoid Production and Their Elicitation of Cell Suspension Cultures of Pueraria candollei var. mirifica: from Shake Flask to Bioreactor. Appl Biochem Biotechnol 190, 57–72 (2020). https://doi.org/10.1007/s12010-019-03094-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03094-y

Keywords

Navigation