Antimicrobial Mechanism of Hydroquinone

Abstract

With growing concern about the possible risks and side effects of antibiotic drugs, more and more natural products with antibacterial activity are studied as the substitutes. In this paper, the antibacterial activity of hydroquinone and arbutin in Ainsliaea bonatii was investigated, which both displayed relatively strong antibacterial activity against Staphylococcus aureus (SA), methicillin-resistant S. aureus (MRSA), and extended spectrum β-lactamase S. aureus (ESBL-SA). The antibacterial mechanism of hydroquinone had been explored by scanning electron microscopy (SEM), alkaline phosphatase (AKP), and bacterial extracellular protein leakage. Results showed that hydroquinone could destroy the bacterial cell wall and membrane, increase permeability, lead leakage of intracellular substance affect synthesis of protein, and influence expression of genes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Olson, M. E., King, J. M., Yahr, T. L., & Horswill, A. R. (2013). Sialic Acid Catabolism in Staphylococcus aureus. Journal of Bacteriology, 195(8), 1779–1788.

    CAS  Article  Google Scholar 

  2. 2.

    Editorial Board of Chinese Academy of Sciences Flora. (1996). Flora of China. Beijing: Science Press.

    Google Scholar 

  3. 3.

    Wang, W., & Kang, W. Y. (2013).Chemical constituents from Ainsliaea bonatii, Chinese Pharmaceutical Journal, 48(3), 174–176.

  4. 4.

    Zhao, M. Q., Shen, H. Y., Pan, W., Wang, J. Y., Li, Y. G., & Chang, Y. (2011). Chin Anim Husb Vet Med, 38(5), 177–181.

  5. 5.

    Jiang, X. F., Hong, X. H., Sun, J. Y., Chen, Y. L., & Ni, Y. X. (2002).Analysis of beta-lactamase in multi-resistant Pseudomonas aeruginosa, Chinese Journal of Microbiology and Immunology, 22(4), 443–446.

  6. 6.

    Wang, M. G. (2006). Research about the drug resistance and plasmid-mediated resistance mechanism of quinolones, National Medical Journal of China, 86(9), 645–647.

  7. 7.

    McKeegan, K. S., Borges-Walmsley, M. I., & Walmsley, A. R. (2003). The structure and function of drug pumps: an update. Trends in Microbiology, 11(1), 21–29.

    CAS  Article  Google Scholar 

  8. 8.

    Keith, P. (2001). Outer membranes and efflux: the path to multidrug resistance in Gram-negative bacteria, Current Opinion in Microbiology, 4(5), 500–508.

  9. 9.

    Kalkhambkar, R. G., Waters, S. N., & Laali, K. K. (2011). Highly efficient synthesis of amides via Ritter chemistry with ionic liquids. Tetrahedron Letters, 52(8), 867–871.

    CAS  Article  Google Scholar 

  10. 10.

    Ali, N. A. A., Jülich, W. D., Kusnick, C., & Lindequist, U. (2001). Screening of Yemeni medicinal plants for antibacterial and cytotoxic activities. Journal of Ethnopharmacology, 74(2), 173–179.

    CAS  Article  Google Scholar 

  11. 11.

    Liu, G., Ma, Y. M., & Zhang, H. C. (2013).Isolation, identification and antimicrobial activities of endophytic fungi from Cephalotaxus fortunei​ , Chinese Pharmaceutical Journal, 48(3), 165–170.

  12. 12.

    Li, C. Q., Zhao, L., Yang, Y. T., & Kang, W. Y. (2011). Antimicrobial activity of Salvia miltiorrhiza and different processed products, Chinese Traditional Patent Medicine., 33(11), 1948–1951.

  13. 13.

    Liu, H. Y., Zhao, D., Chang, J., Yan, L., Zhao, F. J., Wu, Y. C., Xu, T., Gong, T., Chen, L., He, N. N., Wu, Y., Han, S. Q., & Qu, D. (2014). Efficacy of novel antibacterial compounds targeting histidine kinase YycG protein. Applied Microbiology and Biotechnology, 98(13), 6003–6013.

    CAS  Article  Google Scholar 

  14. 14.

    He, N., Zhou, J., Hu, M. Y., Ma, C. Y., & Kang, W. Y. (2018). The mechanism of antibacterial activity of corylifolinin against three clinical bacteria from Psoralen corylifolia L. Open Chemistry, 16(1), 882–889.

    CAS  Article  Google Scholar 

  15. 15.

    Gu, Y. P., Liu, H. Z., & Luo, P. (2014).Antimicrobial effects of chitosan on the main pathogens from urinary tract infection in vitroApplied Chemical Industry., 43(7), 1184–1188.

  16. 16.

    Xu, Y. Y., Cai, S. S., & Yu, J. (2014). Scavenging ability for nitrite and antibacterial mechanism of phytosterol from Cortex moriModern Food Science and Technology., 30(2), 53–57.

  17. 17.

    Lan, W. Q., Xie, J., Hou, W. F., & Li, D. W. (2012). Antimicrobial activity and mechanism of complex biological fresh-keeping agents against Staphylococcus sciuriNatural Product Research and Development, 24(6), 741–746 753.

  18. 18.

    Lee, H. J., Choi, G. J., & Cho, K. Y. (1998). Correlation of Lipid Peroxidation inBotrytiscinereaCaused by Dicarboximide Fungicides with Their Fungicidal Activity. Journal of Agricultural and Food Chemistry, 46(2), 737–740.

    CAS  Article  Google Scholar 

  19. 19.

    He, N., Wang, P. Q., Wang, P. Y., Ma, C. Y., & Kang, W. Y. (2018). Antibacterial mechanism of chelerythrine isolated from root of Toddalia asiatica (Linn) Lam. BMC Complementary and Alternative Medicine, 18(1), 261–269.

    CAS  Article  Google Scholar 

  20. 20.

    Hara, S., & Yamakawa, M. (1995). Bombyx mori. Journal of Biochemistry, 270(50), 29923–229927.

    CAS  Google Scholar 

  21. 21.

    Jing, Y. J., Hao, Y. J., Qu, H., Shan, Y., Li, D. S., & Du, R. Q. (2006). Preliminary studies on antibacterial mechanism and analysis of antibacterial activity of chitosans, Chinese Journal of Antibiotics, 31(6), 361–365.

  22. 22.

    Wang Q. (2011). Master thesis, Liaoning Normal University, Henan, China.

  23. 23.

    Liu, S. X., Wei, H. P., Cheng, J., & Yang, J. Q. (2012).Studies on antibacterial mechanism of the volatile oils from Eupatorium adenophorum Spreng on Staphylococcus aureusChin J Hosp Pharm, 32(21), 1742–1745.

  24. 24.

    Qiang, W., Wang, H. L., Zhou, C. F., & Suo, Y. R. (2011).Determination of protein contents from Caragana korshinskii Kom. seeds using coomassie brilliant blue g-250 dyeing, Amino Acids and Biotic Resources., 33(3), 74–76.

  25. 25.

    Yuan, J. L. (2015). Microbiology (9th ed.). Beijing: China Traditional Medicine Press.

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the valuable cooperation of the members of the National Center for Research and Development of Edible Fungus Processing Technology, Henan University, in the experiments.

Funding Sources

This work was supported by grant (2017YFC1601400) from the Ministry of Science and Technology of the People’s Republic of China and grant (182102110332) from the Scientific and Technology Department of Henan Province.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Jinfeng Wei or Wenyi Kang.

Ethics declarations

Statement of Ethics

We declare that the ethical background of this study was approved by the National Ethical Committee.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ma, C., He, N., Zhao, Y. et al. Antimicrobial Mechanism of Hydroquinone. Appl Biochem Biotechnol 189, 1291–1303 (2019). https://doi.org/10.1007/s12010-019-03067-1

Download citation

Keywords

  • Ainsliaea bonatii
  • Hydroquinone
  • Arbutin
  • Antibacterial mechanism
  • Staphylococcus aureus