Skip to main content
Log in

Target Discovery of Novel α-l-Rhamnosidases from Human Fecal Metagenome and Application for Biotransformation of Natural Flavonoid Glycosides

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

As a green and powerful tool, biocatalysis has emerged as a perfect alternative to traditional chemistry. The bottleneck during process development is discovery of novel enzymes with desired properties and independent intellectual property. Herein, we have successfully bioprospected three novel bacterial α-l-rhamnosidases from human fecal metagenome using a combinatorial strategy by high-throughput de novo sequencing combined with in silico searching for catalytic key motifs. All three novel α-l-rhamnosidases shared low sequence identities with reported (< 35%) and putative ones (< 57%) from public database. All three novel α-l-rhamnosidases were over-expressed as soluble form in Escherichia coli with high-level production. Furthermore, all three novel α-l-rhamnosidases hydrolyzed the synthetic substrate p-nitrophenyl α-l-rhamnopyranoside and natural flavonoid glycosides rutin and naringin with some excellent properties, such as high activity in acidic pH, high activity at low or high temperature, and good tolerance for alcohols and DMSO. Our findings would provide a convenient route for target discovery of the promising biocatalysts from the metagenomes for biotransformation and biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Burton, S. G., Cowan, D. A., & Woodley, J. M. (2002). The search for the ideal biocatalyst. Nature Biotechnology, 20(1), 37–45.

    Article  CAS  PubMed  Google Scholar 

  2. Lorenz, P., Liebeton, K., Niehaus, F., & Eck, J. (2002). Screening for novel enzymes for biocatalytic processes: accessing the metagenome as a resource of novel functional sequence space. Current Opinion in Biotechnology, 13(6), 572–577.

    Article  CAS  PubMed  Google Scholar 

  3. Lorenz, P., & Schleper, C. (2002). Metagenome-a challenging source of enzyme discovery. Journal of Molecular Catalysis B: Enzymatic, 19, 13–19.

    Article  Google Scholar 

  4. Lorenz, P., & Eck, J. (2005). Metagenomics and industrial applications. Nature Review Microbiology, 3(6), 510–516.

    Article  CAS  Google Scholar 

  5. Madhavan, A., Sindhu, R., Parameswaran, B., Sukumaran, R. K., & Pandey, A. (2017). Metagenome analysis: a powerful tool for enzyme bioprospecting. Applied Biochemistry and Biotechnology, 183(2), 636–651.

    Article  CAS  PubMed  Google Scholar 

  6. Hess, M., Sczyrba, A., Egan, R., Kim, T. W., Chokhawala, H., Schroth, G., Luo, S., Clark, D. S., Chen, F., Zhang, T., Mackie, R. I., Pennacchio, L. A., Tringe, S. G., Visel, A., Woyke, T., Wang, Z., & Rubin, E. M. (2011). Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science, 331(6016), 463–467.

    Article  CAS  PubMed  Google Scholar 

  7. Montella, S., Ventorino, V., Lombard, V., Henrissat, B., Pepe, O., & Faraco, V. (2017). Discovery of genes coding for carbohydrate-active enzyme by metagenomic analysis of lignocellulosic biomasses. Scientific Reports, 7(1), 42623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Warnecke, F., Luginbuhl, P., Ivanova, N., Ghassemian, M., Richardson, T. H., Stege, J. T., Cayouette, M., McHardy, A. C., Djordjevic, G., Aboushadi, N., Sorek, R., Tringe, S. G., Podar, M., Martin, H. G., Kunin, V., Dalevi, D., Madejska, J., Kirton, E., Platt, D., Szeto, E., Salamov, A., Barry, K., Mikhailova, N., Kyrpides, N. C., Matson, E. G., Ottesen, E. A., Zhang, X., Hernandez, M., Murillo, C., Acosta, L. G., Rigoutsos, I., Tamayo, G., Green, B. D., Chang, C., Rubin, E. M., Mathur, E. J., Robertson, D. E., Hugenholtz, P., & Leadbetter, J. R. (2007). Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature, 450(7169), 560–565.

    Article  CAS  PubMed  Google Scholar 

  9. Yang, C., Xia, Y., Qu, H., Li, A. D., Liu, R., Wang, Y., & Zhang, T. (2016). Discovery of new cellulases from the metagenome by a metagenomics-guided strategy. Biotechnology for Biofuels, 9, 138.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhou, M., Guo, P., Wang, T., Gao, L., Yin, H., Cai, C., Gu, J., & Lu, X. (2017). Metagenomic mining pectinolytic microbes and enzymes from an apple pomace-adapted compost microbial community. Biotechnology for Biofuels, 10(1), 198.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Seffernick, J. L., de Souza, M. L., Sadowsky, M. J., & Wackett, L. P. (2001). Melamine deaminase and atrazine chlorohydrolase: 98 percent identical but functionally different. Journal of Bacteriology, 183(8), 2405–2410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Glasner, M. E., Fayazmanesh, N., Chiang, R. A., Sakai, A., Jacobson, M. P., Gerlt, J. A., & Babbitt, P. C. (2006). Evolution of structure and function in the o-succinylbenzoate synthase/N-acylamino acid racemase family of the enolase superfamily. Journal of Molecular Biology, 360(1), 228–250.

    Article  CAS  PubMed  Google Scholar 

  13. Gerlt, J. A., Allen, K. N., Almo, S. C., Armstrong, R. N., Babbitt, P. C., Cronan, J. E., Dunaway-Mariano, D., Imker, H. J., Jacobson, M. P., Minor, W., Poulter, C. D., Raushel, F. M., Sali, A., Shoichet, B. K., & Sweedler, J. V. (2011). The enzyme function initiative. Biochemistry, 50(46), 9950–9962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gerlt, J. A., Bouvier, J. T., Davidson, D. B., Imker, H. J., Sadkhin, B., Slater, D. R., & Whalen, K. L. (2015). Enzyme function initiative-enzyme similarity tool (EFI-EST): a web tool for generating protein sequence similarity networks. Biochimica et Biophysica Acta, 1854(8), 1019–1037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Levin, B. J., Huang, Y. Y., Peck, S. C., Wei, Y., Martinez-Del Campo, A., Marks, J. A., Franzosa, E. A., Huttenhower, C., & Balskus, E. P. (2017). A prominent glycyl radical enzyme in human gut microbiomes metabolizes trans-4-hydroxy-l-proline. Science, 355(6325), eaai8386.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hohne, M., Schatzle, S., Jochens, H., Robins, K., & Bornscheuer, U. T. (2010). Rational assignment of key motifs for function guides in silico enzyme identification. Nature Chemical Biology, 6(11), 807–813.

    Article  PubMed  Google Scholar 

  17. Jiang, J., Chen, X., Zhang, D., Wu, Q., & Zhu, D. (2015). Characterization of (R)-selective amine transaminases identified by in silico motif sequence blast. Applied Microbiology and Biotechnology, 99(6), 2613–2621.

    Article  CAS  PubMed  Google Scholar 

  18. Barriuso, J., Prieto, A., & Martinez, M. J. (2013). Fungal genomes mining to discover novel sterol esterases and lipases as catalysts. BMC Genomics, 14(1), 712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Henke, E., Pleiss, J., & Bornscheuer, U. T. (2002). Activity of lipases and esterases towards tertiary alcohols: insights into structure-function relationships. Angewandte Chemie International Edition in English, 41(17), 3211–3213.

    Article  CAS  Google Scholar 

  20. Nguyen, G. S., Thompson, M. L., Grogan, G., Bornscheuer, U. T., & Kourist, R. (2011). Identification of novel esterases for the synthesis of sterically demanding chiral alcohols by sequence-structure guided genome mining. Journal of Molecular Catalysis B: Enzymatic, 70(3-4), 88–94.

    Article  CAS  Google Scholar 

  21. Fraaije, M. W., Wu, J., Heuts, D. P., van Hellemond, E. W., Spelberg, J. H., & Janssen, D. B. (2005). Discovery of a thermostable Baeyer-Villiger monooxygenase by genome mining. Applied Microbiology and Biotechnology, 66(4), 393–400.

    Article  CAS  PubMed  Google Scholar 

  22. Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M., & Henrissat, B. (2014). The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Research, 42(D1), D490–D495.

    Article  CAS  PubMed  Google Scholar 

  23. Cui, Z., Maruyama, Y., Mikami, B., Hashimoto, W., & Murata, K. (2007). Crystal structure of glycoside hydrolase family 78 α-L-rhamnosidase from Bacillus sp. GL1. Journal of Molecular Biology, 374(2), 384–398.

    Article  CAS  PubMed  Google Scholar 

  24. Fujimoto, Z., Jackson, A., Michikawa, M., Maehara, T., Momma, M., Henrissat, B., Gilbert, H. J., & Kaneko, S. (2013). The structure of a Streptomyces avermitilis α-L-rhamnosidase reveals a novel carbohydrate-binding module CBM67 within the six-domain arrangement. The Journal of Biological Chemistry, 288(17), 12376–12385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. O’Neill, E. C., Stevenson, C. E., Paterson, M. J., Rejzek, M., Chauvin, A. L., Lawson, D. M., & Field, R. A. (2015). Crystal structure of a novel two domain GH78 family α-rhamnosidase from Klebsiella oxytoca with rhamnose bound. Proteins, 83(9), 1742–1749.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pachl, P., Škerlová, J., Šimčíková, D., Kotik, M., Křenková, A., Mader, P., Brynda, J., Kapešová, J., Křen, V., Otwinowski, Z., & Řezáčová, P. (2018). Crystal structure of native α-L-rhamnosidase from Aspergillus terreus. Acta Crystallographica Section D, 74(11), 1078–1084.

    Article  CAS  Google Scholar 

  27. Pitson, S. M., Mutter, M., van den Broek, L. A., Voragen, A. G., & Beldman, G. (1998). Stereochemical course of hydrolysis catalysed by alpha-L-rhamnosyl and alpha-D-galacturonosyl hydrolases from Aspergillus aculeatus. Biochemical and Biophysical Research Communications, 242(3), 552–559.

    Article  CAS  PubMed  Google Scholar 

  28. Zverlov, V. V., Hertel, C., Bronnenmeier, K., Hroch, A., Kellermann, J., & Schwarz, W. H. (2000). The thermostable α-L-rhamnosidase RamA of Clostridium stercorarium: biochemical characterization and primary structure of a bacterial α-L-rhamnoside hydrolase, a new type of inverting glycoside hydrolase. Molecular Microbiology, 35(1), 173–179.

    Article  CAS  PubMed  Google Scholar 

  29. Li, B., Ji, Y., Li, Y., & Ding, G. (2018). Characterization of a glycoside hydrolase family 78 α-L-rhamnosidase from Bacteroides thetaiotaomicron VPI-5482 and identification of functional residues. 3 Biotech, 8(2), 120.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kaoutari, A. E., Armougom, F., Gordon, J. I., Raoult, D., & Henrissat, B. (2013). The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nature Review Microbiology, 11(7), 497–504.

    Article  Google Scholar 

  31. Robert, X., & Gouet, P. (2014). Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Research, 42(W1), W320–W324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liang, Y., Li, B., & Li, Y. (2017). Discovering novel α-L-rhamnosidases based on the metagenomic approach. Chinese Journal Biochemistry Molecular Biology, 33, 66–72.

    CAS  Google Scholar 

  33. Kumar, S., Stecher, G., & Tamura, K. (2016). Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870–1874.

    Article  CAS  PubMed  Google Scholar 

  34. Grote, A., Hiller, K., Scheer, M., Munch, R., Nortemann, B., Hempel, D. C., & Jahn, D. (2005). JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Research, 33(Web Server), W526–W531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kennedy, J., O’Leary, N. D., Kiran, G. S., Morrissey, J. P., O’Gara, F., Selvin, J., & Dobson, A. D. (2011). Functional metagenomic strategies for the discovery of novel enzymes and biosurfactants with biotechnological applications from marine ecosystems. Journal of Applied Microbiology, 111(4), 787–799.

    Article  CAS  PubMed  Google Scholar 

  36. Tasse, L., Bercovici, J., Pizzut-Serin, S., Robe, P., Tap, J., Klopp, C., Cantarel, B. L., Coutinho, P. M., Henrissat, B., Leclerc, M., Dore, J., Monsan, P., Remaud-Simeon, M., & Potocki-Veronese, G. (2010). Functional metagenomics to mine the human gut microbiome for dietary fiber catabolic enzymes. Genome Research, 20(11), 1605–1612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Thies, S., Rausch, S. C., Kovacic, F., Schmidt-Thaler, A., Wilhelm, S., Rosenau, F., Daniel, R., Streit, W., Pietruszka, J., & Jaeger, K. E. (2016). Metagenomic discovery of novel enzymes and biosurfactants in a slaughterhouse biofilm microbial community. Scientific Reports, 6(1), 27035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ichinose, H., Fujimoto, Z., & Kaneko, S. (2013). Characterization of an α-L-rhamnosidase from Streptomyces avermitilis. Bioscience Biotechnology and Biochemistry, 77(1), 213–216.

    Article  CAS  Google Scholar 

  39. Avila, M., Jaquet, M., Moine, D., Requena, T., Peláez, C., Arigoni, F., & Jankovic, I. (2009). Physiological and biochemical characterization of the two α-L-rhamnosidases of Lactobacillus plantarum NCC245. Microbiology, 155(8), 2739–2749.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, R., Zhang, B. L., Xie, T., Li, G. C., Tuo, Y., & Xiang, Y. T. (2015). Biotransformation of rutin to isoquercitrin using recombinant α-L-rhamnosidase from Bifidobacterium breve. Biotechnology Letters, 37(6), 1257–1264.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 31400684) and the Natural Science Foundation of Shanxi (No. 2014021030-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin-Chun Li.

Ethics declarations

Our study had been approved by the Committee on the Ethics of Human and Animal Experiments of Shanxi University

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1281 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, BC., Zhang, T., Li, YQ. et al. Target Discovery of Novel α-l-Rhamnosidases from Human Fecal Metagenome and Application for Biotransformation of Natural Flavonoid Glycosides. Appl Biochem Biotechnol 189, 1245–1261 (2019). https://doi.org/10.1007/s12010-019-03063-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03063-5

Keywords

Navigation